@inproceedings{plank-2017-1,
    title = "All-In-1 at {IJCNLP}-2017 Task 4: Short Text Classification with One Model for All Languages",
    author = "Plank, Barbara",
    editor = "Liu, Chao-Hong  and
      Nakov, Preslav  and
      Xue, Nianwen",
    booktitle = "Proceedings of the {IJCNLP} 2017, Shared Tasks",
    month = dec,
    year = "2017",
    address = "Taipei, Taiwan",
    publisher = "Asian Federation of Natural Language Processing",
    url = "https://aclanthology.org/I17-4024/",
    pages = "143--148",
    abstract = "We present All-In-1, a simple model for multilingual text classification that does not require any parallel data. It is based on a traditional Support Vector Machine classifier exploiting multilingual word embeddings and character n-grams. Our model is simple, easily extendable yet very effective, overall ranking 1st (out of 12 teams) in the IJCNLP 2017 shared task on customer feedback analysis in four languages: English, French, Japanese and Spanish."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="plank-2017-1">
    <titleInfo>
        <title>All-In-1 at IJCNLP-2017 Task 4: Short Text Classification with One Model for All Languages</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Barbara</namePart>
        <namePart type="family">Plank</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-12</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the IJCNLP 2017, Shared Tasks</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Chao-Hong</namePart>
            <namePart type="family">Liu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Preslav</namePart>
            <namePart type="family">Nakov</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nianwen</namePart>
            <namePart type="family">Xue</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Asian Federation of Natural Language Processing</publisher>
            <place>
                <placeTerm type="text">Taipei, Taiwan</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present All-In-1, a simple model for multilingual text classification that does not require any parallel data. It is based on a traditional Support Vector Machine classifier exploiting multilingual word embeddings and character n-grams. Our model is simple, easily extendable yet very effective, overall ranking 1st (out of 12 teams) in the IJCNLP 2017 shared task on customer feedback analysis in four languages: English, French, Japanese and Spanish.</abstract>
    <identifier type="citekey">plank-2017-1</identifier>
    <location>
        <url>https://aclanthology.org/I17-4024/</url>
    </location>
    <part>
        <date>2017-12</date>
        <extent unit="page">
            <start>143</start>
            <end>148</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T All-In-1 at IJCNLP-2017 Task 4: Short Text Classification with One Model for All Languages
%A Plank, Barbara
%Y Liu, Chao-Hong
%Y Nakov, Preslav
%Y Xue, Nianwen
%S Proceedings of the IJCNLP 2017, Shared Tasks
%D 2017
%8 December
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F plank-2017-1
%X We present All-In-1, a simple model for multilingual text classification that does not require any parallel data. It is based on a traditional Support Vector Machine classifier exploiting multilingual word embeddings and character n-grams. Our model is simple, easily extendable yet very effective, overall ranking 1st (out of 12 teams) in the IJCNLP 2017 shared task on customer feedback analysis in four languages: English, French, Japanese and Spanish.
%U https://aclanthology.org/I17-4024/
%P 143-148
Markdown (Informal)
[All-In-1 at IJCNLP-2017 Task 4: Short Text Classification with One Model for All Languages](https://aclanthology.org/I17-4024/) (Plank, IJCNLP 2017)
ACL