@inproceedings{plank-2017-1,
title = "All-In-1 at {IJCNLP}-2017 Task 4: Short Text Classification with One Model for All Languages",
author = "Plank, Barbara",
editor = "Liu, Chao-Hong and
Nakov, Preslav and
Xue, Nianwen",
booktitle = "Proceedings of the {IJCNLP} 2017, Shared Tasks",
month = dec,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-4024",
pages = "143--148",
abstract = "We present All-In-1, a simple model for multilingual text classification that does not require any parallel data. It is based on a traditional Support Vector Machine classifier exploiting multilingual word embeddings and character n-grams. Our model is simple, easily extendable yet very effective, overall ranking 1st (out of 12 teams) in the IJCNLP 2017 shared task on customer feedback analysis in four languages: English, French, Japanese and Spanish.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="plank-2017-1">
<titleInfo>
<title>All-In-1 at IJCNLP-2017 Task 4: Short Text Classification with One Model for All Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the IJCNLP 2017, Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chao-Hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present All-In-1, a simple model for multilingual text classification that does not require any parallel data. It is based on a traditional Support Vector Machine classifier exploiting multilingual word embeddings and character n-grams. Our model is simple, easily extendable yet very effective, overall ranking 1st (out of 12 teams) in the IJCNLP 2017 shared task on customer feedback analysis in four languages: English, French, Japanese and Spanish.</abstract>
<identifier type="citekey">plank-2017-1</identifier>
<location>
<url>https://aclanthology.org/I17-4024</url>
</location>
<part>
<date>2017-12</date>
<extent unit="page">
<start>143</start>
<end>148</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T All-In-1 at IJCNLP-2017 Task 4: Short Text Classification with One Model for All Languages
%A Plank, Barbara
%Y Liu, Chao-Hong
%Y Nakov, Preslav
%Y Xue, Nianwen
%S Proceedings of the IJCNLP 2017, Shared Tasks
%D 2017
%8 December
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F plank-2017-1
%X We present All-In-1, a simple model for multilingual text classification that does not require any parallel data. It is based on a traditional Support Vector Machine classifier exploiting multilingual word embeddings and character n-grams. Our model is simple, easily extendable yet very effective, overall ranking 1st (out of 12 teams) in the IJCNLP 2017 shared task on customer feedback analysis in four languages: English, French, Japanese and Spanish.
%U https://aclanthology.org/I17-4024
%P 143-148
Markdown (Informal)
[All-In-1 at IJCNLP-2017 Task 4: Short Text Classification with One Model for All Languages](https://aclanthology.org/I17-4024) (Plank, IJCNLP 2017)
ACL