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A data-oriented parsing or DOP model for statistical parsing associates fragments of linguistic
representations with numerical weights, where these weights are estimated by normalizing the
empirical frequency of each fragment in a training corpus (see Bod [1998] and references cited
therein). This note observes that this estimation method is biased and inconsistent; that is, the
estimated distribution does not in general converge on the true distribution as the size of the
training corpus increases.

1. Introduction

The data-oriented parsing or DOP approach to statistical natural language analy-
sis has attracted considerable attention recently and has been used to produce sta-
tistical language models based on various kinds of linguistic representation, as
described in Bod (1998). These models are based on the intuition that statistical gen-
eralizations about natural languages should be stated in terms of “chunks” or “frag-
ments” of linguistic representations. Linguistic representations are produced by
combining these fragments, but unlike in stochastic models such as Probabilistic Con-
text-Free Grammars, a single linguistic representation may be generated by several
different combinations of fragments. These fragments may be large, permitting DOP
models to describe nonlocal dependencies. Usually the fragments used in a
DOP model are themselves obtained from a training corpus of linguistic represen-
tations. For example, in DOP1 or Tree-DOP the fragments are typically all the
connected multinode trees that appear as subgraphs of any tree in the training
corpus.

This note shows that the estimation procedure standardly used to set the parame-
ters or fragment weights of a DOP model (see, for example, Bod [1998]) is biased and
inconsistent. This means that as sample size increases, the corresponding sequence of
probability distributions estimated by this procedure does not converge to the true
distribution that generated the training data. Consistency is usually regarded as the
minimal requirement any estimation method must satisfy (Breiman 1973; Shao 1999),
and the inconsistency of the standard DOP estimation method suggests it may be
worth looking for other estimation methods. Note that while the bulk of DOP re-
search uses the estimation procedure studied here, recently there has been research
that has used other estimators for DOP models (Bonnema, Buying, and Scha 1999;
Bod 2000), and it would be interesting to investigate the statistical properties of these
estimators as well.
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Figure 1
Depictions of three different derivations of the same tree representation of Alex likes pizza, with
arrows indicating the sites of tree fragment substitutions.

2. DOP1 Models

For simplicity, this note focuses on DOP1 or Tree-DOP models, in which linguistic
representations are phrase structure trees, but the results carry over to more complex
models that use attribute-value feature structure representations such as LFG-DOP.
The fragments used in DOP1 are multinode trees whose leaves may be labeled with
nonterminals as well as terminals. A derivation starts with a fragment whose root
is labeled with the start symbol, and it proceeds by substituting a fragment for the
leftmost nonterminal leaf under the constraint that the fragment’s root node and the
leaf node have the same label. The derivation terminates when there are no nonter-
minal leaves. Figure 1 depicts three different derivations that yield the same tree. The
fragments used in these derivations could have been obtained from a training corpus
of trees that contains trees for examples such as Sasha likes motorcycles, Alex eats pizza,
and so on.

In a DOP model, each fragment is associated with a real-valued weight, and the
weight of a derivation is the product of the weights of the tree fragments involved.
The weight of a representation is the sum of the weights of its derivations, and a
probability distribution over linguistic representations is obtained by normalizing the
representations’ weights.1 Given a combinatory operation and a fixed set of fragments,
a DOP model is a parametric model where the fragment weights are the parameters.

In DOP1 and DOP models based on it, the weight associated with a fragment is
estimated as follows (Bod 1998). For each tree fragment f , let n(f ) be the number of
times it appears in the training corpus, and let F be the set of all tree fragments with
the same root as f . Then the weight w(f ) associated with f is

w(f ) =
n(f )∑

f ′∈F n(f ′)
.

This relative-frequency estimation method has the advantage of simplicity, but as
shown in the following sections, it is biased and inconsistent.

1 In DOP1 and similar models, it is not necessary to normalize the representations’ weights if the
fragments’ weights are themselves appropriately normalized.
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3. Bias and Inconsistency

Bias and inconsistency are usually defined for parametric estimation procedures in
terms that are not quite appropriate for evaluating the DOP estimation procedure,
but their standard definitions (see Shao [1999] for a textbook exposition) will serve
as the basis for the definitions adopted below. Let Θ be a vector space of real-valued
parameters, so that Pθ, θ ∈ Θ is a probability distribution. In the DOP1 case, Θ would
be the space of all possible weight assignments to fragments. An estimator φ is a
function from a vector x of n samples to a parameter value φ(x) ∈ Θ, and an estimation
procedure specifies an estimator φn for each sample size n.

Let X be a vector of n independent random variables distributed according to
Pθ? for some θ? ∈ Θ. Then φ(X) is also a random variable, ranging over parameter
vectors Θ, with an expected value Eθ?(φ(X)). The bias of the estimator φ at θ? is the
difference Eθ?(φ(X))− θ? between its expected value and the “true” parameter value
θ? that determines the distribution X. A biased estimator is one with nonzero bias for
some value of θ?.

A loss function L is a function from pairs of parameter vectors to the nonnegative
reals. Given a sample x drawn from the distribution θ?, L(θ?,φ(x)) measures the “cost”
or the “loss” incurred by the error in the estimate φ(x) of θ?. For example, a standard
loss function is the Euclidean distance metric L(θ?,φ(x)) = ‖φ(X)− θ?‖2 (note that the
results below do not depend on this choice of loss function). The risk of an estimator
φ at θ? is its expected loss Eθ?(L(θ?,φ(X)). An estimation procedure is consistent if
and only if the limit of the risk of φn is 0 as n → ∞ for all θ?. (There are various
different notions of consistency depending on how convergence is defined; however,
the DOP1 estimator is not consistent with respect to any of the standard definitions
of consistency.)

Strictly speaking, the standard definitions of bias and loss function are not appli-
cable to DOP estimation because there can be two distinct parameter vectors θ1, θ2 for
which Pθ1 = Pθ2 even though θ1 6= θ2 (such a case is presented in the next section).
Thus it is more natural to define bias and loss in terms of the probability distributions
that the parameters specify, rather than in terms of the parameters themselves. In this
paper, an estimator is unbiased iff PEθ? (φ(X)) = Pθ? for all θ?; that is, its expected
parameter estimate specifies the same distribution as the true parameters. Similarly,
the loss function is the mean squared difference between the “true” and estimated
distributions; that is, if Ω is the event space (in DOP1, the space of all phrase structure
trees), then

L(θ?,φ(x)) =
∑
ω∈Ω

Pθ?(ω)(Pθ?(ω)− Pφ(x)(ω))2.

As before, the risk of an estimator is its expected loss, and an estimation procedure is
consistent iff the limit of the expected loss is 0 as n→∞.

4. A DOP1 Example

This section presents a simple DOP1 model that only generates two trees with prob-
ability p and 1 − p, respectively. The DOP relative frequency estimator is applied to
a random sample of size n drawn from this population to estimate the tree weight
parameters for the model. The bias and inconsistency of the estimator follow from
the fact that these estimated parameters generate the trees with probabilities differ-
ent from p and 1 − p. The trees used and their DOP1 fragments are shown in Fig-
ure 2.
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Figure 2
The trees t1, t2 and their associated fragments f1, . . . , f7 in the DOP1 model.

Suppose the “true” weights for the fragments f1, . . . , f7 are 0 except for the follow-
ing fragments:

w?(f4) = p,

w?(f6) = 1− p,

w?(f7) = 1.

Then Pw?(t1) = p and Pw?(t2) = 1 − p. (Note that exactly the same tree distribution
could be obtained by setting w?(f1) = p and w?(f5) = 1− p and all other weights to 0;
thus the tree weights are not identifiable.) Then in a sample of size n drawn from the
distribution Pw? the expected number of occurrences of tree t1 is np and the expected
number of occurrences of tree t2 is n(1− p). Thus the expected number of occurrences
of the fragments in a sample of size n is

E(n(fi)) = np for i = 1, . . . , 4;

E(n(fi)) = n(1− p) for i = 5, 6;

E(n(f7)) = n + np.

Thus after normalizing, the expected estimated weights for the fragments using the
DOP estimator are

E(ŵ(fi)) =
p

2 + 2p
for i = 1, . . . , 4;

E(ŵ(fi)) =
1− p

2 + 2p
for i = 5, 6;

E(ŵ(f7)) = 1.

Further calculation shows that

PE(ŵ)(t1) =
2p

1 + p
,
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Figure 3
The value of PE(ŵ)(t1) as a function of Pw?(t1) = p. The identity function p is also plotted for
comparison.

PE(ŵ)(t2) =
1− p
1 + p

.

Figure 3 shows how PE(ŵ)(t1) varies as a function of Pw?(t1) = p. The difference
PE(ŵ)(t1) − p reaches a maximum value of approximately 0.17 at p =

√
2 − 1. Thus

except for p = 0 and p = 1, PE(ŵ) 6= Pw? ; that is, the DOP1 estimator is biased.
Further, note that the estimated distribution PE(ŵ) does not approach Pw? as the

sample size increases, so the expected loss does not converge to 0 as the sample size
n increases. Thus the DOP1 estimator is also inconsistent.

5. Conclusion

The previous section showed that the relative frequency estimation procedure used
in DOP1 and related DOP models is biased and inconsistent. Bias is not necessarily a
defect in an estimator, and Geman, Bienenstock, and Doursat (1992) argue that it may
be desirable to trade variance for bias. However, inconsistency is usually viewed as a
fatal flaw of an estimator. Nevertheless, excellent empirical results have been claimed
for the DOP1 model, so perhaps there are some circumstances in which inconsistent
estimators perform well. Undoubtedly there are other estimation procedures for DOP
models that are unbiased and consistent. For example, maximum likelihood estimators
are unbiased and consistent across a wide class of models, including, it would seem, all
reasonable DOP models (Shao 1999). Bod (2000) describes a procedure for maximum
likelihood estimation of DOP models based on an Expectation Maximization–like al-
gorithm. In addition, Rens Bod (personal communication) points out that because the
set of fragments in a DOP1 model includes all of the trees in the training corpus,
the maximum likelihood estimator will assign the training corpus trees their empiri-
cal frequencies, and assign 0 weight to all other trees. However, this seems to be an
overlearning problem rather than a problem with maximum likelihood estimation per
se, and standard methods, such as cross-validation or regularization, would seem in
principle to be ways to avoid such overlearning. Obviously, empirical investigation
would be useful here.

75



Computational Linguistics Volume 28, Number 1

Acknowledgments
I would like to thank Rens Bod, Michael
Collins, Eugene Charniak, David
McAllester, and the anonymous reviewers
for their excellent advice.

References
Bod, Rens. 1998. Beyond Grammar: An

Experience-Based Theory of Language. CSLI
Publications, Stanford, CA.

Bod, Rens. 2000. Combining semantic and
syntactic structure for language
modelling. In Proceedings of the 8th
International Conference on Spoken Language

Processing (ICSLP 2000), Beijing.
Bonnema, Remko, Paul Buying, and Remko

Scha. 1999. A new probability model for
data oriented parsing. In Proceedings of the
12th Amsterdam Colloquium, Amsterdam.

Breiman, Leo. 1973. Statistics with a View
toward Applications. Houghton Mifflin,
Boston.

Geman, Stuart, Elie Bienenstock, and René
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