
Squibs and Discussions

Real versus Template-Based Natural Language
Generation: A False Opposition?

Kees van Deemter�

University of Aberdeen

Emiel Krahmer.

Tilburg University

Mariët Theune-

University of Twente

This article challenges the received wisdom that template-based approaches to the generation of

language are necessarily inferior to other approaches as regards their maintainability, linguistic

well-foundedness, and quality of output. Some recent NLG systems that call themselves

‘‘template-based’’ will illustrate our claims.

1. Introduction

Natural language generation (NLG) systems are sometimes partitioned into application-
dependent systems which lack a proper theoretical foundation, on the one hand, and
theoretically well-founded systems which embody generic linguistic insights, on the
other. Template-based systems are often regarded as automatically falling into the first
category. We argue against this view. First, we describe the received view of both
template-based and ‘‘standard’’ NLG systems (section 2). Then we describe a class of
recent template-based systems (section 3) that will serve as a basis for a comparison
between template-based and other NLG systems with respect to their potential for
performing NLG tasks (section 4). We ask what the real difference between template-
based and other systems is and argue that the distinction between the two is becoming
increasingly blurred (section 5). Finally, we discuss the implications of engineering
shortcuts (Mellish 2000) and corpus-based methods (section 6).

2. Templates versus Real NLG: The Received View

Before we can argue against the distinction between template-based and ‘‘real’’ NLG
systems, we should first sketch how these two classes are commonly understood. It is
surprisingly difficult to give a precise characterization of the difference between them
(and we will later argue against the usefulness of such a characterization), but the idea
is the following. Template-based systems are natural-language-generating systems
that map their nonlinguistic input directly (i.e., without intermediate representations)
to the linguistic surface structure (cf. Reiter and Dale 1997, pages 83–84). Crucially, this
linguistic structure may contain gaps; well-formed output results when the gaps are

* 2005 Association for Computational Linguistics

� Computing Science Department, King’s College, University of Aberdeen, United Kingdom.
E-mail: KvDeemter@csd.abdn.ac.uk.

. Communication and Cognition/Computational Linguistics, Faculty of Arts, Tilburg University,
Tilburg, The Netherlands. E-mail: E.J.Krahmer@uvt.nl.

- Human Media Interaction Group, Computer Science, University of Twente, The Netherlands.
E-mail: M.Theune@ewi.utwente.nl.

filled or, more precisely, when all the gaps have been replaced by linguistic structures
that do not contain gaps. (Canned text is the borderline case of a template without
gaps.) Adapting an example from Reiter and Dale (1997), a simple template-based
system might start out from a semantic representation saying that the 306 train leaves
Aberdeen at 10:00 AM:

Departureðtrain306; locationabdn; time1000Þ

and associate it directly with a template such as

½train� is leaving ½town�now

where the gaps represented by [train] and [town] are filled by looking up the relevant
information in a table. Note that this template will be used only when the time referred
to is close to the intended time of speaking; other templates must be used for
generating departure announcements relating to the past or future. ‘‘Real’’ or, as we
shall say, standard NLG systems, by contrast, use a less direct mapping between input
and surface form (Reiter 1995; Reiter and Dale 1997). Such systems could start from
the same input semantic representation, subjecting it to a number of consecutive
transformations until a surface structure results. Various NLG submodules would
operate on it (determining, for instance, that 10:00 AM is essentially the intended time
of speaking), jointly transforming the representation into an intermediate representa-
tion like

Leavepresent ðtraindemonstrative; Aberdeen; nowÞ

where lexical items and style of reference have been determined while linguistic
morphology is still absent. This intermediate representation may in turn be transformed
into a proper sentence, for example: This train is leaving Aberdeen now. Details vary; in
particular, many systems will contain more intermediate representations.

Template-based and standard NLG systems are said to be ‘‘Turing equivalent’’
(Reiter and Dale 1997); that is, each of them can generate all recursively enumerable
languages. However, template-based systems have been claimed to be inferior with
respect to maintainability, output quality and variation, and well-foundedness. Reiter
and Dale (1997) state that template-based systems are more difficult to maintain and
update (page 61) and that they produce poorer and less varied output (pages 60, 84)
than standard NLG systems. Busemann and Horacek (1998) go even further by
suggesting that template-based systems do not embody generic linguistic insights
(page 238). Consistent with this view, template-based systems are sometimes over-
looked. In fact, the only current textbook on NLG (Reiter and Dale 2000) does not
pay any attention to template-based generation, except for a passing mention of the
ECRAN system (Geldof and van de Velde 1997). Another example is a recent overview
of NLG systems in the RAGS project (Cahill et al. 1999). The selection criteria employed
by the authors were that the systems had to be fully implemented, complete (i.e.,
generating text from nontextual input), and accepting non-hand-crafted input; al-
though these criteria appear to favor template based systems, none of the 19 systems
investigated were template-based. In what follows, we claim that the two types of
systems have more in common than is generally thought and that it is counter-
productive to treat them as distant cousins instead of close siblings. In fact, we argue
that there is no crisp distinction between the two.

16

Computational Linguistics Volume 31, Number 1

17

3. Template-Based NLG Systems in Practice

In recent years, a number of new template-based systems have seen the light,
including TG/2 (Busemann and Horacek 1998), D2S (van Deemter and Odijk 1997;
Theune et al. 2001), EXEMPLARS (White and Caldwell 1998), YAG (McRoy, Channarukul,
and Ali 2003), and XTRAGEN (Stenzhorn 2002). Each of these systems represents a
substantial research effort, achieving generative capabilities beyond what is usually
expected from template-based systems, yet they call themselves template-based,
and they clearly fall within the characterization of template-based systems offered
above.

In this article we draw on our own experiences with a data-to-speech method
called D2S. D2S has been used as the foundation of a number of language-generating
systems, including GOALGETTER, a system that generates soccer reports in Dutch.1 D2S

consists of two modules: (1) a language generation module (LGM) and (2) a speech
generation module (SGM) which turns the generated text into a speech signal. Here
we focus on the LGM and in particular on its use of syntactically structured templates
to convert a typed data structure into a natural language text (annotated with prosodic
information). Data structures in GOALGETTER are simple representations describing
lists of facts, such as�

goal-event
TEAM Ajax
PLAYER Kluivert
MINUTE 38
GOAL-TYPE penalty

�

Besides goal events, there are several other types of events, such as players receiving
yellow or red cards. Figure 1 shows a simple template, which the LGM might use to
express the above fact as, for instance, Kluivert scored a penalty in the 38th minute.

1 See http://www.cs.utwente.nl/Ètheune/GG/GG_index.html for some example reports.

Figure 1
Sample syntactic template from the GOALGETTER system.

van Deemter, Krahmer, and Theune Real versus Template-Based NLG

Formally, a syntactic template s = bS, E, C, TÀ, where S is a syntax tree (typically for
a sentence) with open slots in it, E is a set of links to additional syntactic structures
(typically NPs and PPs) which may be substituted in the gaps of S, C is a condition on
the applicability of s, and T is a set of topics. We discuss the four components of a
template in more detail, starting with the syntax tree, S. All S’s interior nodes are
labeled by nonterminal symbols, while the nodes on the frontier are labeled by
terminal or nonterminal symbols: the nonterminal nodes (‘‘gaps’’) are open for
substitution and they are marked by a ,. The second element of a syntactic template is
E: the slot fillers. Each open slot in the tree S is associated with a call of some Express
function (ExpressTime, ExpressObject, etc.), which generates a set of expressions that
can be used to fill the slot. The right-hand side of Figure 2 shows an example Express
function, namely, ExpressObject, which generates a set of NP trees and is used to
generate fillers for the player and goal slots in the template of Figure 1. The first, for
example, leads to the generation of NPs such as Kluivert (proper name), the forward
Kluivert, Ajax player Kluivert, Ajax́ Kluivert, the striker, and he, depending on the context
in which the NP is generated.

The left-hand side of Figure 2 shows the function ApplyTemplate, which handles
the choice among all possible combinations of slot fillers. ApplyTemplate first calls
FillSlots to obtain the set of all possible trees (all_trees) that can be generated from the
template, using all possible combinations of slot fillers generated by the Express
functions associated with the slots. For each tree in this set, it is checked (1) whether it
does not violate a version of the Chomskyan binding theory and (2) whether it is
compatible with the context model, which is a record containing all the objects
introduced so far and the anaphoric relations among them. From the resulting set of
allowed_trees, one is selected randomly (using the function PickAny) and returned to
the main generation algorithm. The random-choice option was chosen to maximize the
variety of sentences produced by the system.

The mechanisms described so far take care of sentence planning and language
realization. Text planning is performed by components C and T. C is a Boolean
condition. A template s is applicable only if its associated condition is true. An
example is the condition from Figure 1 saying that the template can be used only if
the result of the current match has been conveyed to the user (i.e., is known) and
the current goal is the first one which has not been conveyed (i.e., is not known). To
cater to aspects of text planning that allow a less knowledge-intensive approach,
GOALGETTER associates every template with a set of topics T, which the LGM algo-
rithm uses to group sentences together into coherent chunks of text. For example, any

18

Figure 2
Functions ApplyTemplate (left) and ExpressObject (right).

Computational Linguistics Volume 31, Number 1

19

template associated with the topic of goal scoring can ‘‘fire’’ throughout the opening
paragraph of the report.

4. Template-Based NLG: Deep or Shallow?

How do template-based systems measure up against the criteria mentioned in
section 2? When dealing with this question, we are interested as much in what could
be done in principle as in what has been achieved in practice. After some preliminary
remarks, we focus on the criterion of linguistic well-foundedness.

It is far from obvious that template-based systems should always score low on
maintainability. Several template-based systems such as TG/2, EXEMPLARS, and
XTRAGEN have been reused for generation in different languages or in different
domains (cf. Kittredge et al. 1994). In the case of D2S, the basic generation algorithm
and such functions as ApplyTemplate and ExpressObject have been used for different
application domains (music, soccer games, route descriptions, and public transport)
and different languages (English, Dutch, and German); D2S has been used for the
generation of both monologues and dialogue contributions (van Deemter and Odijk
1997; Theune et al. 2001). When a template-based system is applied to a new domain or
language, many of the templates will have to be written anew (much as new grammar
fragments need to be developed for standard NLG systems), but the underlying
generation mechanisms generally require little or no modification.

As for the output quality and variability of the output, if template-based systems
have the same generative power as standard NLG systems (Reiter and Dale 1997),
there cannot be a difference between the types of output that they are able to generate
in principle. The fact that templates can be specified by hand gives template-based
systems an advantage in cases in which good linguistic rules are not (yet) available or
for constructions which have unpredictable meanings or highly specific conditions of
use. Some template-based systems have variability as one of their central design
specifications: Current D2S-based systems rely mainly on random choice to achieve
variation, but more context-sensitive variations (e.g., varying the output depending on
user characteristics) can also be achieved through the use of parametrized templates
(XTRAGEN) or template specialization hierarchies (EXEMPLARS).

The most crucial question, in our view, is whether a template-based NLG system
can be linguistically well-founded (or ‘‘deep’’ in terms of Busemann and Horacek
[1998]), in the sense that the choices inherent in its mapping from input to output are
based on sound linguistic principles. To judge the well-foundedness of template-based
systems, let us look at the different types of decisions that an NLG system needs to
make, as distinguished by Cahill et al. (1999) and Reiter and Dale (2000).

4.1 Content Determination
During content determination, it is decided what information is to be conveyed. Since
content determination precedes language generation proper, it is clear that in principle,
template-based systems can treat it in the exact same ways as standard NLG systems.
In practice, template-based systems tend to take their departure from ‘‘flat data’’ (e.g.,
database records), whereas standard systems often use richer input, in which some
decisions concerning the linguistic structure of the output (e.g., decisions about
quantificational or rhetorical structure) have already been made. To the extent that this
is the case, the ‘‘generation gap’’ to be bridged by template-based systems is actually
wider than the one to be bridged by standard NLG systems.

van Deemter, Krahmer, and Theune Real versus Template-Based NLG

4.2 Referring Expressions
As for the generation of referring expressions, template-based systems vary widely:
The simplest of them (e.g., MSWord-based systems for mail merge) can fill their gaps
with only a limited number of phrases, but more sophisticated systems (called
‘‘hybrid’’ systems in Reiter [1995]) have long existed; these effectively use standard
NLG to fill their gaps. Recent systems have moved further in this direction. D2S, for
example, uses well-established rules for constraining the use of anaphors (see, e.g., the
Chomskyan ViolateBindingTheory and Wellformed in ApplyTemplate) and a new
variant of Dale and Reiter’s (1995) algorithm for the generation of referring expressions
that takes contextual salience into account (MakeReferringExp in ExpressObject)
(Krahmer and Theune 2002). A similar range of approaches can be found among NLG
systems that are not template-based; in fact, several systems from the RAGS inventory
do not really address referring expression generation at all (Cahill et al. 1999).

4.3 Aggregation
Aggregation is an NLG task in which differences between the two types of systems
may be expected. After all, every template contains a ‘‘fixed’’ part, and surely this part
cannot be recombined with other parts? The reality is slightly more complex. The
GOALGETTER system, for instance, uses the following approach: In order to generate a
subject-aggregated sentence of the form A and B got a red card, a separate template is
called of the form X got a red card [syntactic structure omitted], subject to conditions
requiring that the gap X be filled with an appropriate conjoined noun phrase, referring
to the set {A, B}. Other approaches are possible. For example, the system could first
generate A got a red card and B got a red card, then aggregate these two structures (whose
syntactic and semantic structure is known) into the desired conjunctive structure (van
Deemter and Odijk 1997). Whether a system is able to perform operations of this kind
does not depend on whether the system is template based, but on whether it possesses
the required syntactic and semantic information.

4.4 Lexicalization
The same point is relevant for lexicalization. Let us suppose (perhaps rather charitably;
Cahill et al. 1999) that a variety of near-synonymous verbs are present in the lexicon of
the NLG system (e.g., give, offer, donate, entrust, present to). How would a standard NLG
system choose among them? Typically, the system does not have a clue, because our
understanding of the differences among these verbs is too imperfect. (The input to the
system might prejudge such decisions by pairing each of these verbs with different
input relations, but that would be cheating.) As with the previous tasks, it is not clear
that standard NLG systems are in a better position to perform them than template-
based ones: The latter could use templates that vary in the choice of words and
stipulate that they are applicable under slightly different conditions (cf. the use of
specialization hierarchies in EXEMPLARS). The condition C for X kicked the ball in the net,
for example (as opposed to X scored or X nudged the ball in) might require that the ball
did not touch the ground after departing the previous player.

4.5 Linguistic Realization
It is in linguistic realization that the most obvious differences between standard and
template-based approaches appear to exist. Many template-based approaches lack a
general mechanism for gender, number, and person agreement, for example. Systems
in the D2S tradition avoid errors by letting functions like ExpressObject use handmade
rules, but this approach becomes cumbersome when coverage increases; general-

20

Computational Linguistics Volume 31, Number 1

21

izations are likely to be missed and portability is reduced, for example, if different
templates are used for John walks and John and Mary walk. One should not, however, let
one’s judgment depend on accidental properties of one or two systems: Nothing keeps
the designer of a template-based system from adding morphological rules; witness
systems like YAG (McRoy, Channarukul, and Ali 2003) and XTRAGEN (Stenzhorn 2002).
The YAG system, for example, allows the subject and verb of a template to be
underspecified for number and person, while using attribute grammar rules to
complete the specification: Returning to the example above, the number attribute of
John and Mary is inferred to be plural (unlike, e.g., John and I); a subject-verb
agreement rule makes the further inference that the verb must be realized as walk,
rather than walks.

5. Templates: An Updated View

A new generation of systems that call themselves template-based have blurred the line
between template-based and standard NLG. This is not only because some systems
combine standard NLG with templates and canned text (Piwek 2003), but also because
modern template-based systems tend to use syntactically structured templates and
allow the gaps in them to be filled recursively (i.e., by filling a gap, a new gap may
result). Some ‘‘template-based’’ systems, finally, use grammars to aid linguistic
realization. These developments call into question the very definition of ‘‘template
based’’ (section 2), since the systems that call themselves template-based have come to
express their nonlinguistic input with varying degrees of directness.

‘‘Template-based’’ systems vary in terms of linguistic coverage, the amount of
syntactic knowledge used, and the number of steps involved in filling the templates,
among other things. Here, we highlight one particular dimension, namely, the size of
(the fixed part of) the templates. A comparison with tree-adjoining grammar (TAG)–
based-approaches to NLG may be useful (Joshi 1987; see also Becker 2002). Joshi (1987,
page 234) points out that ‘‘The initial . . . trees are not constrained in any other manner
than. . . . The idea, however, is that [they] will be minimal in some sense.’’ Minimality is
usually interpreted as saying that a tree should not contain more than the lexical head
plus its arguments. Initial trees may be likened to templates. Nonminimal templates/
elementary trees are essential for the treatment of idioms and special collocations.
Generally speaking, however, the larger the templates/elementary trees, the less sys-
tematic the treatment, the less insight it gives into the compositional structure of lan-
guage, and the larger the number of templates/elementary trees needed. Again, the
history of D2S is instructive: The earliest D2S-based NLG system (DYD; van Deemter and
Odijk 1997) used long templates, but the majority of the templates in GOALGETTER are
minimal in the sense explicated above (Theune et al. 2001).

6. Discussion: Shortcuts and Statistics in NLG

Let us compare our views with those of Mellish (2000). Mellish points out that NLG
systems often use shortcuts, whereby one or more modules are trivialized, either by
bypassing them (and the representations that they create) or by letting their operations
be dictated by what the other modules expect (e.g., lexical choice may be trivialized
by using a one-to-one mapping between semantic relations/predicates and lexical
items). Mellish argues that shortcuts have a legitimate role in practical NLG when
linguistic rules are missing, provided the existence of the shortcuts is acknowledged:
Even though they lead to diminished generality and maintainability, the unavailability

van Deemter, Krahmer, and Theune Real versus Template-Based NLG

of ‘‘deep’’ rules means that there is no alternative (yet). For instance, there is little
added value in using abstract representations from which either a passive or an active
sentence can be generated if we are unable to state a general rule that governs the
choice, in which case one can be forgiven for explicitly specifying which sentences
should be active and which ones passive, avoiding a pretense of linguistic sophis-
tication. It is shortcuts of this kind that a template-based system is well placed to make,
of course. But crucially, template-based systems do not have to use shortcuts any more
than standard NLG systems: Where linguistic rules are available, both types of sys-
tems can use them, as we have seen.

Another response to the absence of linguistic rules is the use of statistical
information derived from corpora, as is increasingly more common in realization, but
also for instance in aggregation (e.g., Walker, Rambow, and Rogati 2002). The point we
want to make here, however, is that ‘‘template-based’’ systems may profit from such
corpus-based approaches just as much as ‘‘standard’’ NLG systems. The approach of
Langkilde and Knight (1998), for example, in which corpus-derived n-grams are used
for selecting the best ones from among a set of candidates produced by overgenera-
tion, can also be applied to template-based systems (witness the mixed template/
stochastic system of Galley, Fosler-Lussier, and Potamianos [2001]).

We have argued that systems that call themselves template based can, in principle,
perform all NLG tasks in a linguistically well-founded way and that more and more
actually implemented systems of this kind deviate dramatically from the stereotypical
systems that are often associated with the term template. Conversely, most standard
NLG systems perform many NLG tasks in a less than well-founded fashion (e.g.,
relying heavily on shortcuts, and nontransparent ones at that). We doubt that there is
still any important difference between the two classes of systems, since the variation
within each of them is as great as that between them.

22

Acknowledgments
This is a remote descendant of a paper
presented at the workshop ‘‘May I Speak
Freely?’’ (Becker and Busemann 1999). We
thank three reviewers for comments.

References
Becker, Tilman. 2002. Practical,

template-based natural language
generation with TAG. In Proceedings
of TAG+6, Venice.

Becker, Tilman and Stephan Busemann,
editors. 1999. ‘‘May I Speak Freely?’’ Between
Templates and Free Choice in Natural
Language Generation: KI-99 Workshop.
DFKI, Saarbrücken, Germany.

Busemann, Stephan and Helmut
Horacek. 1998. A flexible shallow
approach to text generation. In Proceedings
of the Ninth International Workshop on
Natural Language Generation,
pages 238–247: Niagara-on-the-Lake,
Ontario, Canada.

Cahill, Lynn, Christy Doran, Roger Evans,
Chris Mellish, Daniel Paiva, Mike Reape,

and Donia Scott. 1999. In search of a
reference architecture for NLG systems.
In Proceedings of the Seventh European
Workshop on Natural Language Generation,
pages 77–85: Toulouse, France.

Dale, Robert and Ehud Reiter. 1995.
Computational interpretations of the
Gricean maxims in the generation of
referring expressions. Cognitive Science,
18:233–263.

Galley, Michel, Eric Fosler-Lussier, and
Alexandros Potamianos. 2001. Hybrid
natural language generation for spoken
dialogue systems. In Proceedings of
the Seventh European Conference on
Speech Communication and Technology.
Aalborg, Denmark.

Geldof, Sabine and Walter van de Velde.
1997. An architecture for template based
(hyper)text generation. In Proceedings of
the Sixth European Workshop on Natural
Language Generation, pages 28–37,
Duisburg, Germany.

Joshi, Aravind. 1987. The relevance of
tree adjoining grammar to generation.
In Gerard Kempen, editor. Natural Language

Computational Linguistics Volume 31, Number 1

23

Generation, Martinus Nijhoff, Leiden,
The Netherlands, pages 233–252.

Kittredge, Richard, Eli Goldberg, Myunghee
Kim, and Alain Polguère. 1994.
Sublanguage engineering in the FOG
system. In Fourth Conference on Applied
Natural Language Processing, pages 215–216,
Stuttgart, Germany.

Krahmer, Emiel and Mariët Theune. 2002.
Efficient context-sensitive generation of
descriptions in context. In Kees van
Deemter and Rodger Kibble, editors,
Information Sharing. CSLI Publications,
Stanford, CA, pages 223–264.

Langkilde, Irene and Kevin Knight. 1998.
Generation that exploits corpus-based
statistical knowledge. In Proceedings of
the ACL, pages 704–710, Montreal,
Quebec, Canada.

McRoy, Susan W., Songsak Channarukul,
and Syed S. Ali. 2003. An augmented
template-based approach to text
realization. Natural Language Engineering,
9(4):381–420.

Mellish, Chris. 2000. Understanding shortcuts
in NLG systems. In Proceedings of Impacts in
Natural Language Generation: NLG between
Technology and Applications, pages 43–50,
Dagstuhl, Germany.

Piwek, Paul. 2003. A flexible
pragmatics-driven language generator for
animated agents. In Proceedings of EACL03
(Research Notes), pages 151–154,
Budapest, Hungary.

Reiter, Ehud. 1995. NLG vs. templates. In
Proceedings of the Fifth European Workshop on

Natural Language Generation, pages 95–105,
Leiden, The Netherlands.

Reiter, Ehud and Robert Dale. 1997. Building
applied natural language generation
systems. Natural Language Engineering,
3(1):57–87.

Reiter, Ehud and Robert Dale. 2000.
Building Natural Language Generation
Systems. Cambridge University
Press, Cambridge.

Stenzhorn, Holger. 2002. A natural language
generation system using XML- and
Java-technologies. In Proceedings of the
Second Workshop on NLP and XML,
Taipei, Taiwan.

Theune, Mariët, Esther Klabbers, Jan-Roelof
de Pijper, Emiel Krahmer, and Jan Odijk.
2001. From data to speech: A general
approach. Natural Language Engineering,
7(1):47–86.

van Deemter, Kees and Jan Odijk. 1997.
Context modelling and the generation of
spoken discourse. Speech Communication,
21(1/2):101–121.

Walker, Marilyn, Owen Rambow, and
Monica Rogati. 2002. Training a sentence
planner for spoken dialogue using
boosting. Computer Speech and Language,
16:409–433.

White, Michael and Ted Caldwell. 1998.
EXEMPLARS: A practical, extensible
framework for dynamic text generation.
In Proceedings of the Ninth International
Workshop on Natural Language Generation,
pages 266–275, Niagara-on-the-Lake,
Ontario, Canada.

van Deemter, Krahmer, and Theune Real versus Template-Based NLG

