
Latent Trees for Coreference Resolution

Eraldo Rezende Fernandes∗
Instituto Federal de Goiás

Cı́cero Nogueira dos Santos∗∗
Brazilian Research Lab
IBM Research

Ruy Luiz Milidiú†
PUC-Rio

We describe a structure learning system for unrestricted coreference resolution that explores
two key modeling techniques: latent coreference trees and automatic entropy-guided feature
induction. The latent tree modeling makes the learning problem computationally feasible be-
cause it incorporates a meaningful hidden structure. Additionally, using an automatic feature
induction method, we can efficiently build enhanced nonlinear models using linear model learn-
ing algorithms. We present empirical results that highlight the contribution of each modeling
technique used in the proposed system. Empirical evaluation is performed on the multilingual
unrestricted coreference CoNLL-2012 Shared Task data sets, which comprise three languages:
Arabic, Chinese, and English. We apply the same system to all languages, except for minor
adaptations to some language-dependent features such as nested mentions and specific static
pronoun lists. A previous version of this system was submitted to the CoNLL-2012 Shared Task
closed track, achieving an official score of 58.69, the best among the competitors. The unique
enhancement added to the current system version is the inclusion of candidate arcs linking
nested mentions for the Chinese language. By including such arcs, the score increases by almost
4.5 points for that language. The current system shows a score of 60.15, which corresponds to a
3.5% error reduction, and is the best performing system for each of the three languages.

1. Introduction

Mentions are textual references to real-world entities or events. In a given document,
mentions that refer to the same entity are called coreferring mentions and form a men-
tion cluster. Coreference resolution is the task of identifying the mention clusters in a
document and has been a core research topic in natural language processing. It has wide
applications in question answering, machine translation, automatic summarization,
and information extraction. Coreference resolution systems have been evaluated for

∗ E-mail: eraldo.fernandes@ifg.edu.br. This work was developed when the first author was at PUC-Rio.
∗∗ E-mail: cicerons@br.ibm.com.
† E-mail: milidiu@inf.puc-rio.br.

Submission received: 5 February 2013; revised submission received: 22 December 2013; accepted for
publication: 5 January 2014.

doi:10.1162/COLI a 00200

© 2014 Association for Computational Linguistics

Computational Linguistics Volume 40, Number 4

several decades, beginning with MUC-6 (Sundheim and Grishman 1995). Following
those evaluation efforts, the CoNLL-2011 Shared Task (Pradhan et al. 2011) has been
dedicated to the modeling of unrestricted coreference resolution for English text. The
CoNLL-2012 Shared Task (Pradhan et al. 2012) extends the task to a multilingual scope,
considering three languages: Arabic, Chinese, and English.

A singleton is a mention cluster containing exactly one mention. The unrestricted
coreference resolution task consists of identifying the non-singleton mention clusters in
a document. This task is usually split into three subtasks: mention detection, mention
clustering, and singleton elimination. In Figure 1, we present an illustrative example.
First, ten mentions are detected and shown in bold. They are sequentially tagged with
the numbers 1, 2, . . . , 10. Next, four mention clusters are identified by tagging each men-
tion with one of the tags a, b, c, d to indicate its cluster, where a = {1, 2, 8, 9}, b = {3, 7},
c = {4, 5, 6}, d = {10} are the four mention clusters. Finally, clusters that contain only
one mention are ignored, such as the one with Iran as its unique mention. In this
example, we ignore some noun phrases in the mention detection subtask to simplify
the illustration.

The final subtask is trivial, given the solution of the previous one. For the first
subtask, several specific heuristics have been proposed, enabling the construction of
high-recall mention detectors. The second subtask is harder, as it requires a complex
output. Most of the current effort toward solving the coreference resolution task is
focused on the mention clustering subtask.

Here, we propose an approach to unrestricted coreference resolution that is based
on two key modeling techniques: latent coreference trees and entropy-guided feature
induction. Our approach is based on a graph whose nodes are the mentions in the given
document. The arcs of this graph link mention pairs that are coreferent candidates. The
resulting structure predictor has similar steps for training and testing.

Predictor training can be summarized as follows:

1. Mention Detection – where we build a graph node for each mention by
adapting a predictor proposed by dos Santos and Carvalho (2011);

2. Candidate Pair Generation – where we add a directed arc for each candidate
coreferent mention pair by adapting the sieves proposed by Lee et al.
(2013);

1. Mention Detection

North Korea1 opened its2 doors to the U.S.3 today, welcoming Secretary of State Madeleine Albright4. She5
says her6 visit is a good start. The U.S.7 remains concerned about North Korea’s8 missile development program
and its9 exports of missiles to Iran10.

2. Mention Clustering

North Koreaa opened itsa doors to the U.S.b today, welcoming Secretary of State Madeleine Albrightc. Shec says
herc visit is a good start. The U.S.b remains concerned about North Korea’sa missile development program and
itsa exports of missiles to Irand.

3. Singleton Elimination

North Koreaa opened itsa doors to the U.S.b today, welcoming Secretary of State Madeleine Albrightc. Shec says
herc visit is a good start. The U.S.b remains concerned about North Korea’sa missile development program and
itsa exports of missiles to Iran.

Figure 1
Unrestricted coreference resolution subtasks: mention detection, clustering, and singleton
elimination.

802

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

3. Basic Feature Setting – where we set basic features that indicate whether an
arc is likely to be connecting a coreferent pair by adapting the features
used by dos Santos and Carvalho (2011);

4. Context Feature Induction – where we conjoin basic features to generate
complex features with high discriminating power by means of the
entropy-guided feature induction method proposed by Fernandes and
Milidiú (2012) and Milidiú, dos Santos, and Duarte (2008); and

5. Coreference Tree Learning – where we learn how to extract the trees that
connect coreferent mentions in the graph of mentions by applying a
large margin latent perceptron structure learning algorithm.

To provide features with high predicting power to our model, we use entropy-guided
feature induction. Using this mechanism, we automatically generate several feature
templates that capture coreference-specific local context knowledge. Furthermore,
this feature induction mechanism extends the structured perceptron framework by
providing an efficient general method to build strong nonlinear classifiers.

Predictor testing uses the same first three steps as in predictor training, followed by
three further steps:

4. Context Feature Setting – where we set the values of the additional induced
features selected at training;

5. Coreference Tree Prediction – where we apply the Chu-Liu-Edmonds
algorithm to solve an optimal branching problem to find the maximum
score coreference trees; and

6. Coreference Cluster Extraction – where we extract the clusters of coreferring
mentions from the coreference trees.

For the Coreference Tree Prediction step, we solve an optimal branching problem
to find the maximum score coreference trees. This process is efficiently performed by
the Chu-Liu-Edmonds algorithm (Chu and Liu 1965; Edmonds 1967). A tree score is
simply the sum of its arc scores, which are given by a weighted sum of the arc features.
The feature weights are learned during training in the Coreference Tree Learning step,
which is based on the structured perceptron algorithm. Because coreference trees are not
given in the training data, we assume that these structures are latent and use the latent
structured perceptron (Sun et al. 2009; Yu and Joachims 2009) as the learning algorithm.
In fact, we use a large margin extension of this algorithm (Fernandes and Brefeld 2011).

The Coreference Cluster Extraction step is trivial by construction because its input
is a set of coreference trees. Each coreference tree corresponds to a cluster of coreferring
mentions.

Due to the different application set-ups for coreference resolution as a subtask,
multiple metrics have been proposed for evaluating coreference performance. No single
metric is clearly superior to the others. We follow the CoNLL-2012 Shared Task evalua-
tion scheme, adopting the unweighted average of the MUC, B3, and CEAFe metrics. We
also use the multilingual data sets provided in the CoNLL-2012 Shared Task to assess
our system. The official ranking for this task is given by the mean of the system scores
on three languages: Arabic, Chinese, and English.

We apply the same system to all three languages with only some minor adaptations,
such as language-dependent static pronoun lists. Our system does not consider verbs

803

Computational Linguistics Volume 40, Number 4

when creating candidate mentions. Therefore, it does not resolve coreferences involving
events. We participated in the CoNLL-2012 Shared Task with a previous version of our
system (Fernandes, dos Santos, and Milidiú 2012). The system submitted to this task
achieved scores of 54.22, 58.49, and 63.37 on the Arabic, Chinese, and English test sets,
respectively. Its official score is thus 58.69, which is the best among the competitors.
Later, we extended this system by including candidate arcs linking nested mentions for
the Chinese language. This version shows an official score of 60.15, corresponding to a
1.46 point absolute improvement or a 3.5% error reduction. As far as we know, this is
currently the best performing system on the CoNLL-2012 Shared Task Arabic, Chinese,
and English test sets.

The remainder of this article is organized as follows. In Section 2, we review related
work. In Section 3, we detail our approach to the mention detection subtask. In Section 4,
we describe coreference trees, a key element in solving the mention clustering subtask
in our system. We also examine the coreference tree prediction problem. In Section 5, we
detail the entropy-guided feature induction method and its application to coreference
resolution. In Section 6, we describe the large margin latent structured perceptron that
we use to learn the coreference trees. In Section 7, we present our experimental setting.
The experimental findings are provided in Section 8. Finally, in Section 9, we present
our concluding remarks.

2. Related Work

Over the last two decades, many different machine learning–based approaches to co-
reference resolution have been proposed. Most of them use supervised learning and
divide the task into two phases: the detection of potential mentions and the linking of
mentions to form coreference chains, that is, mention clustering. In Ng (2010), the author
presents a detailed review of supervised approaches to coreference resolution.

Many works that report results for the MUC-6 corpus (Sundheim and Grishman
1995) and the Automated Content Extraction (ACE) corpus (Doddington et al. 2004)
use gold mention boundaries and, hence, do not address the mention detection task
(Culotta, Wick, and Mccallum 2007; Finkel and Manning 2008; Poon and Domingos
2008; Haghighi and Klein 2009). Most of the works that perform mention detection use
a set of heuristics. The common approach consists of extracting all noun phrases from
the parse tree and considering them to be candidate mentions (Soon, Ng, and Lim 2001;
dos Santos and Carvalho 2011; Haghighi and Klein 2010; Stoyanov et al. 2010; Chang
et al. 2011; Bansal and Klein 2012; Lee et al. 2013; Sapena, Padró, and Turmo 2013). A
few works approach the mention detection task by training classifiers (Bengtson and
Roth 2008; Yuan et al. 2012). For the CoNLL data sets, training mention detectors is
not a suitable approach because singleton mentions are not annotated in this corpus.
Systems trained and tested with these data sets frequently privilege mention recall
over precision (Chang et al. 2011; Lee et al. 2011; Sapena, Padró, and Turmo 2011).
Therefore, these systems usually extract noun phrases that are not identified in the
parse tree. This strategy increases consistency with the corpus annotation (Chang et al.
2011; Sapena, Padró, and Turmo 2011; Björkelund and Farkas 2012; Lee et al. 2013). The
system proposed in this work uses a rule-based approach to mention detection, which
is similar to previous work with the CoNLL data sets (dos Santos and Carvalho 2011).

The usual strategy for mention clustering consists of recasting the problem as a
pairwise classification task (McCarthy and Lehnert 1995; Soon, Ng, and Lim 2001; Ng
and Cardie 2002; Ponzetto and Strube 2006; Bengtson and Roth 2008; Ng 2009; Stoyanov
et al. 2009; Björkelund and Nugues 2011; Uryupina et al. 2011; Uryupina, Moschitti, and

804

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

Poesio 2012). In this strategy, a preprocessing step is used to generate pairs of candidate
coreferring mentions. In the training phase, it is necessary to generate positive and
negative examples of coreferring pairs. For this purpose, the approach proposed by
Soon, Ng, and Lim (2001) is normally used. For instance, in the CoNLL 2011 Shared
Task (Pradhan et al. 2011), 11 of the 18 machine learning–based participant systems
used Soon, Ng, and Lim’s approach or a variation of it. In the classification phase, each
candidate pair of mentions is classified as coreferring or not, using the classifier learned
from the annotated corpus. When using the mention-pair approach, a linking step is
necessary to remove inconsistencies that would result from the pairwise classifications
and to construct a partition on the set of mentions. An aggressive strategy for this last
step consists of merging each mention with all preceding mentions that are classified as
coreferent with it (McCarthy and Lehnert 1995; dos Santos and Carvalho 2011). More
sophisticated strategies, such as inference methods, have also been proposed (Bengtson
and Roth 2008; Chang et al. 2011). One of the main disadvantages of the mention-
pair classification approach is the lack of global information. Moreover, the lack of
information on the clusters already formed can lead to contradictory links.

Methods have been proposed to overcome the limitations of mention-pair classifica-
tion. Entity-mention models address the lack of information about the clusters already
formed by seeking to classify whether a mention is coreferent with a preceding cluster
(Luo et al. 2004; McCallum and Wellner 2005; Culotta, Wick, and Mccallum 2007; Yang
et al. 2008). While entity-mention models have the advantage of allowing the creation of
cluster-level features, they fail to identify the most probable candidate antecedent, just
as the mention-pair classification approach does. Ranking models address this issue by
directly comparing different candidate antecedents for the mention part of the training
criterion (Yang et al. 2003; Yang, Su, and Tan 2008; Denis and Baldridge 2008). However,
ranking models are unable to exploit cluster-level features. An approach that combines
the advantages of entity-mention and ranking models was proposed by Rahman and
Ng (2009). Their method, the cluster-ranking model, ranks preceding clusters rather
than candidate antecedents, thereby enabling the use of cluster-level features.

Global inference methods that combine classification and clustering in one step
have also been proposed. Cai and Strube (2010), Cai, Mujdricza-Maydt, and Strube
(2011) and Sapena, Padró, and Turmo (2013) present systems that implement global de-
cision via hypergraph partitioning. Whereas Cai and Strube (2010) and Cai, Mujdricza-
Maydt, and Strube (2011) use a spectral clustering algorithm to perform hypergraph
partitioning, Sapena, Padró, and Turmo (2013) use relaxation labeling for the resolution
process. There are also approaches that perform global inference using integer linear
programming to enforce consistency on the extracted coreference chains (Denis and
Baldridge 2007; Klenner 2007; Finkel and Manning 2008).

Finley and Joachims (2005) and McCallum and Wellner (2005) formulate coreference
resolution as a correlation clustering problem. The former use structural SVMs as the
learning algorithm, and the latter use Collins’ structured perceptron. Our system is
also based on the structured perceptron; however, we use a large margin extension
of this algorithm and use latent trees to represent each coreferring cluster. Yu and
Joachims (2009) propose structural SVMs with latent variables and apply this approach
to coreference resolution. They compare their results with those of Finley and Joachims
(2005) and show that the latent trees significantly improve performance. The main
issue with correlation clustering for coreference resolution is that all pairwise links
between coreferring mentions are considered to compute the solution score. However,
many pairs of coreferring mentions do not have a direct relation. For example, in
Figure 1, mentions 2 and 9 are coreferent pronouns, but they are in neither anaphoric

805

Computational Linguistics Volume 40, Number 4

nor cataphoric relation. Mention 1 is an antecedent of mention 2; mention 8 is an
antecedent of mention 9; and mentions 1 and 8 are obviously coreferent. Hence, these
two pronouns can be predicted as coreferent only by transition between other direct
references. By using trees, the natural hierarchy of coreference dependencies is better
modeled.

The model proposed by Yu and Joachims (2009) is highly related to ours because
it is also based on latent trees. However, they use undirected trees to represent clusters,
whereas we use directed trees. This difference is most likely not very significant, but
we think that most coreference dependencies are directed relations. Using the example
from Figure 1 again, we can see that mention 2 is a reference to mention 1 and not the
other way around. By using directed trees, we model coreference dependencies, such
as the dependencies between nouns and pronouns referring to the same entity. Other
differences between Yu and Joachims (2009) and our work are that they do not use
an artificial root node and, moreover, that their empirical evaluation is based on the
MUC-6 task (Sundheim and Grishman 1995), whereas ours is based on the CoNLL-
2012 Shared Task. The CoNLL-2012 Shared Task considers multilingual unrestricted
coreference resolution. It defines a more general task than the one proposed by the
MUC-6, as the annotated mentions in OntoNotes cover entities and events not limited
to noun phrases or a limited set of entity types (Pradhan et al. 2011).

One key contribution of our work is the application of entropy-guided feature
induction to coreference resolution, which we experimentally demonstrate as highly
effective. There are some on-line methods (della Pietra, della Pietra, and Lafferty 1997;
McCallum 2003) that perform feature induction within the learning algorithm. These
methods choose among candidate features by evaluating their impact on performance
along with the learning process. Our method is off-line. In this case, feature induction is
performed by an efficient procedure before the training step. Off-line methods have two
main advantages over on-line ones: (i) they are usually faster, as inducing features dur-
ing training requires substantially more learning iterations; and (ii) there is not a need to
modify the learning algorithm, so we can use it as is. The proposed method extends the
automatic template generation strategy proposed in Entropy-Guided Transformation
Learning (dos Santos and Milidiú 2009) to structure learning. This strategy has been
previously applied to the English unrestricted coreference resolution task (dos Santos
and Carvalho 2011). However, this previous work is based on a completely different
task modeling and a different learning algorithm.

3. Mention Detection

The first subtask in coreference resolution, mention detection, is formally solved by an
auxiliary predictor A given by

mmm = A(ddd)

where mmm is the list of detected mentions in the given document ddd. Singleton mentions
are not annotated in the CoNLL-2012 data sets. Hence, a specific noun phrase may
be annotated as a mention in one document but not in another document due to
the absence of coreferring mentions in the latter. Therefore, machine learning–based
mention detectors are difficult to build in this case.

In our system, the auxiliary predictor A is based on a specific set of rules that
implement heuristics that have been proven effective in previous works (dos Santos and

806

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

Carvalho 2011). For a given document ddd, this predictor generates a list mmm of candidate
mentions by including the following items:

1. noun phrases from the provided parse tree;

2. pronouns, even when they appear inside larger noun phrases;

3. named entities in the categories Person (PERSON), Organization (ORG),
and Geo-Political Entity (GPE), even when they appear inside larger noun
phrases;

4. and possessive marks, to better align with the CoNLL-2012 annotated
mentions.

If a mention is not detected in this step, our system is not able to resolve references
to that mention. Toward this goal, we define a set of rules that rely mainly on the
use of parse tree information and that privilege recall over precision. Note that rules
2, 3, and 4 have the effect of expanding the set of extracted noun phrases, thereby
aligning the set of detected mentions more fully with the CoNLL-2012 annotated
mentions. Note also that all but the fourth rule are language independent. The fourth
rule is used for the English language only. This set of rules can be further improved
by including rules that contain language-specific knowledge. For instance, Lee et al.
(2013) use rules to remove occurrences of pleonastic it, as in It is possible that and
It seems that.

The CoNLL-2012 Shared Task data sets also include coreferring mentions of events.
However, the current version of our system does not consider verbs when creating
candidate mentions and therefore does not resolve coreferences involving events.

4. Mention Clustering

In the mention clustering subtask, we must find a structure predictor F that assigns to
its input xxx a high-quality mention clustering ŷyy given by

ŷyy = F(xxx)

where xxx = (ddd,mmm), with ddd a new unlabeled document and mmm its corresponding mention
set.

In machine learning–based predictors, we learn F from a training setD = {(xxx,yyy)} of
correct input–output pairs. More specifically, the structured perceptron algorithm learns
the weight vector www of a parameterized predictor given by

ŷyy = F(xxx;www) = arg max
yyy∈Y (xxx)

s(xxx,yyy;www),

where Y (xxx) is the set of feasible outputs for xxx, that is, all clusterings over the detected
mentions mmm in xxx, and s is a www-parameterized scoring function over the clusterings.
The prediction ŷyy is the solution of an optimization problem and is called the prediction
problem. The objective function of this problem is given by s, and it scores the candidate
clusterings for the given document.

We introduce coreference trees to represent mention clusters. A coreference tree is
a directed tree whose nodes are the coreferring mentions in a cluster and whose arcs

807

Computational Linguistics Volume 40, Number 4

represent strong coreference relations between mentions. To illustrate this concept, we
use the labeled document in Figure 1. In Figure 2, we present a plausible coreference
tree for the {1, 2, 8, 9}mention cluster.

We are not concerned about the semantics underlying coreference trees because
they are simply auxiliary structures for the clustering task. Nevertheless, we have two
arguments to justify the application of these structures. First, the concept is linguisti-
cally plausible because there is a dependency relation between coreferring mentions.
Based on the aforementioned example, it may be observed that mention 8 (North Ko-
rea’s) is indeed more likely to be associated with mention 1 (North Korea) than with
mention 2 (its), even considering that, in the text, mention 8 is closer to mention
2 than to mention 1. Hence, the coreference trees should capture this dependency
structure. Second, the concept is algorithmically plausible because most hierarchical
clustering methods incrementally link an unclustered mention to a previous cluster.
This operation can be viewed as adding a directed arc from the mention to its clos-
est cluster member. We use a data set to learn a scoring function that captures the
strength of the coreference relation between two mentions. This scoring function on
the arcs guides the construction of the coreference trees with the largest aggregate
scores.

This modeling approach is closely related to the one proposed by Yu and Joachims
(2009). However, Yu and Joachims use undirected spanning trees instead of directed
ones. We think that directed trees are more appropriate for use in coreference resolution
to represent dependencies between mentions. Recalling the example from Figure 2, it
is clear that mention 2 (its) is a reference to mention 1 (North Korea), not the other way
around. Hence, there is indeed a direction related to the dependency between a pair of
coreferring mentions.

For a whole document comprising certain coreferring clusters, we have a forest of
coreference trees, one tree for each cluster. Hence, for the sake of simplicity, we link the
root node of every coreference tree to an artificial root node, obtaining the document tree.
In Figure 3, we depict a document tree for the current example.

Finally, it is important to remark that from a document tree, one can easily generate
a mention clustering as follows:

1. remove the artificial root node and all its outgoing arcs, splitting the
document tree into a forest;

2. from each tree in the resulting forest, output its node set as a mention
cluster.

North Korea

its North Korea's

its

1

2 8

9

Figure 2
A possible coreference tree for the mention cluster {1, 2, 8, 9} from the document in Figure 1.

808

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

Artificial
Root

Secretary of State
Madeleine Albright

She

her

North Korea

its North Korea's

its

1

2 8

9

4

5

6

U.S.

U.S.

3

7

Figure 3
Document tree with artificial root node and its three coreference subtrees.

Hence, coreference trees provide a powerful auxiliary structure for solving the
mention clustering subtask. Formally, we decompose the original predictor into two
predictors, as follows:

F(xxx) ≡ Fy(Fh(xxx))

where Fy(hhh) is the straightforward two-step procedure described here to generate a
mention clustering from a document tree hhh, and Fh(xxx) is the document tree predictor, which
is defined as

ĥ̂ĥh = Fh(xxx) = arg max
h∈H(xxx)

〈www,ΦΦΦ(xxx,hhh)〉

withH(xxx) defined as the set of feasible document trees for the mentions in xxx and ΦΦΦ(xxx,hhh)
as the joint feature vector representation of xxx and document tree hhh.

The document tree predictor Fh(xxx) finds a maximum scoring rooted tree over the
feasible document trees for mentions in xxx. A tree score is given by a linear function
over its features. To understand how this predictor works, we must define the set H(xxx)
of feasible document trees, the feature vector ΦΦΦ(xxx,hhh), and the algorithm that solves the
arg max combinatorial problem.

The trees in H(xxx) are subgraphs of the directed graph G(xxx), which is called the
candidate pairs graph. Therefore, we must describe how to build the nodes and the
directed arcs of this graph. The input xxx = (ddd,mmm) provides mmm, the list of mentions in
document ddd. For each mention in mmm, a node is created in G(xxx). Thus, an arc in G(xxx)
connects a pair of mentions in xxx. Ideally, we would consider the complete graph for
each document. However, because the number of mentions may be large and because
most mention pairs are not coreferent, we filter the arcs simply by using sieves from
the method proposed by Lee et al. (2013) for English coreference resolution. To further
reduce the total number of arcs, we only consider forward arcs, which means that a
directed arc (i, j) from mention i to mention j is only included in G(xxx) if i appears before
j in the document text. In this way, we avoid including many unnecessary arcs in G(xxx),
which speeds up the training. Each forward arc that passes through any of the used
sieves is included in G(xxx) and is called a candidate arc. We also refer to the two mentions
of a candidate arc as a candidate pair. Because we heuristically filter arcs out of G(xxx),

809

Computational Linguistics Volume 40, Number 4

the correct cluster yyy can be disconnected in G(xxx). In such a case, the correct prediction of
yyy is impossible. However, such cases are rare, given that the recall of the used sieves is
approximately 90%. To complete G(xxx), we add an artificial root node and connect it to
each mention in xxx. These extra arcs are the artificial arcs, and under the current setting,
they also point to the first mention in a cluster. Hence, we can learn how to use them to
control the number of mention clusters.

The next predictor ingredient to be defined is the feature vector ΦΦΦ(xxx,hhh). This vector
is linearly decomposed as

ΦΦΦ(xxx,hhh) =
∑
e∈hhh

ΦΦΦ(xxx, e)

where e = (i, j) is a directed arc in hhh linking mention i to mention j, and ΦΦΦ(xxx, e) =
(φ1(xxx, e), . . . ,φM(xxx, e)) is a feature vector that describes e. Each of these features helps
to identify whether i and j are coreferent or not. To define these features, we utilize the
entropy-guided feature induction method described in the next section.

Our coreference resolution approach is similar to previous structure learning ap-
proaches for dependency parsing (McDonald, Crammer, and Pereira 2005; Fernandes
and Milidiú 2012). Thus, the arg max combinatorial problem reduces to a maximum
branching problem, which can be efficiently solved using the Chu-Liu-Edmonds algo-
rithm (Chu and Liu 1965; Edmonds 1967).

5. Entropy-Guided Feature Induction

The CoNLL-2012 Shared Task data sets include features that are either naturally present
in documents, such as words, or automatically generated by external systems, such
as POS tags and named entities information. We call this information provided by
the data sets basic features. At the same time, most structure learning algorithms
are based on linear models, as such algorithms have strong theoretical guarantees
regarding their prediction performance and, moreover, are computationally efficient.
However, linear models using basic features alone do not capture enough information
to effectively represent coreference dependencies. Conjoining basic features to derive
new features is a common way to introduce nonlinear contextual patterns into linear
models.

The entropy-guided feature induction (EFI) method automatically derives a set of
basic feature conjunctions, which we call feature templates. These templates are later
used to generate the derived features, which comprise the input feature vectors ΦΦΦ(xxx, e)
used in the structured modeling described in the previous sections.

EFI conjoins the basic features that are useful to predict whether the mentions
linked by an arc are coreferring. To solve this auxiliary binary classification problem,
we derive a new set of data sets from the original one. Using all arcs in each of the
candidate pair graphs, we obtain the arc data set D = {(ΨΨΨ(e), c(e))}, comprising the arc
basic feature vectors ΨΨΨ(e) along with their binary classification c(e). In Table 1, we depict
an example of such a data set for the document in Figure 1. This example includes
the following features: i-head is the head word of mention i; i-pos is the head POS
tag of mention i; j-head is the head word of mention j; j-pos is the head POS tag of
mention j; sameNE indicates whether both mentions have the same named entity type;
and dist is the number of mentions in the document text that occur between mentions
i and j.

810

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

Table 1
Arc data set with some arcs from the document in Figure 1.

e ΨΨΨ(e) c(e)
i j i-head i-pos j-head j-pos sameNE dist

1 2 Korea Noun its Pronoun N 0 1
1 3 Korea Noun U.S. Noun Y 1 0
2 4 its Pronoun Secretary Noun N 1 0
1 9 Korea Noun its Pronoun N 7 1

The EFI method automatically generates feature templates for a structure learning
problem by conjoining basic features that are highly discriminative. This method is
based on the conditional entropy of arc label c(e) given the basic features ΨΨΨ(e).

The first step of the proposed method is to train a decision tree on the arc data set.
The decision variable indicates whether the arc links two coreferring mentions. We use
the arcs of all training examples; that is, for each training document, we generate an
example for each candidate arc. Thus, the learned decision tree (DT) predicts whether
the mentions linked by an arc are coreferring. In Figure 4, we present a decision tree
learned from an arc data set. Each internal node in the DT corresponds to a feature;
each leaf node has a label value (0 or 1, in the binary case); and each arc is labeled with
a value of the source node feature. Note that in this sample DT, we suppress several
possible feature values to simplify the presentation.

The most popular decision tree learning algorithms use the Gain Ratio to select the
most informative feature (Quinlan 1992; Su and Zhang 2006). The Gain Ratio is simply
a normalized version of the information gain measure. Hence, these algorithms provide
a quick way to obtain entropy-guided feature selection. We propose a new automatic
feature generation method for structure learning algorithms. The key idea is to use
decision tree induction to conjoin the basic features. One of the most frequently used
algorithms for DT induction is C4.5 (Quinlan 1992). We use Quinlan’s C4.5 system to
obtain the required entropy-guided selected features.

Our method uses a very simple scheme to extract feature templates. We consider all
partial paths starting at the root node. For each path, a template is created by conjoining
all of its node features. Because we aim to generate feature templates—conjunctions of
basic features that do not include feature values—we ignore the feature values and the
decision variable values in the DT. Thus, we do not use arc labels or leaf nodes. Figure 5
illustrates our method. The tree in the left side of this figure is the skeleton obtained from
the decision tree in Figure 4 by discarding the aforementioned pieces of information.

dist

j-pos sameNE

i-pos sameNE

Noun Verb

1 0 1 0

1 0

Y

Y

N

NNoun Verb

1 2

Figure 4
A decision tree.

811

Computational Linguistics Volume 40, Number 4

Decision Tree Skeleton Induced Feature Templates

dist

j-pos sameNE

i-pos sameNE

dist
dist sameNE
dist j-pos
dist j-pos i-pos
dist j-pos sameNE

Figure 5
Feature template induction from a decision tree.

Its nodes are basic features with high discriminative power. The generated templates
are listed on the right side of the figure. In other words, we create a template with
the features in each path from the root node to every other internal node in the given
decision tree. Additionally, we eliminate duplicate templates.

Because C4.5 greedily chooses the feature with the highest information ratio at each
step, our method generates feature templates with high discriminative power based on
entropy. This method can provide a very large number of templates. Hence, to limit the
maximum template length, we use C4.5 pruned trees and limit the maximum template
length when traversing the DT. This parameter is clearly task-dependent and must be
calibrated by cross-validation or on a development set.

Finally, we utilize the generated templates to induce the binary contextual features
that occur in the structured data set D. For each template, we generate many binary
features. These derived features comprise the structured model feature vectors ΦΦΦ(xxx, e) =
(φ1(xxx, e), . . . ,φM(xxx, e)). For instance, one of the derived features for the template dist
j-pos sameNE is given by

φm(xxx, e) =

{
1 if dist=2 and j-pos=Noun and sameNE=N,
0 otherwise.

Note that this feature captures a context that is not used by the DT in Figure 4. Indeed,
we eliminate the DT feature values when generating the templates and then instantiate
these templates based on every context that occurs in a training example.

Thus, the derived feature vector ΦΦΦ(xxx, e) is a binary vector whose 1-valued positions
indicate the derived features that are active in arc e. These active derived features depend
on the values of the basic features ΨΨΨ(e). The number of derived features M is very large
because several combinations of basic feature values arise for each template. However,
the number of active derived features in a specific arc is much smaller. In fact, for each
arc, there is one active derived feature for each template; all others are set to zero.

Observe that integer basic features are transformed into categorical features before
running the DT algorithm. For such features, each integer value is considered a different
category. This approach works better than slicing the value range of these features, as
the integer features considered in our system have quite narrow ranges.

812

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

6. Large Margin Latent Tree Learning

In our learning set-up for the mention clustering subtask, we are given a training set
D = {(xxx,yyy)}, where each example consists of a mention set xxx and its corresponding
mention clustering yyy. Beforehand, we also generate the candidate pairs graph G(xxx) for
each example, as described in Section 4. The generation of these graphs for the CoNLL-
2012 data sets is detailed in Section 7.2. Observe that document trees are not given in D.
Thus, we assume that these structures are latent and use the latent structured perceptron
algorithm (Sun et al. 2009; Yu and Joachims 2009; Fernandes and Brefeld 2011) to train
our models.

First, we predict the constrained document tree h̃̃h̃h for the training instance (xxx,yyy),
using a specialization of the document tree predictor, the constrained tree predictor
Fh(xxx,yyy). This predictor finds a maximum scoring document tree for xxx that follows the
correct clustering yyy. Therefore, its search is constrained to a subset H(xxx,yyy) contained in
H(xxx).

The constrained tree predictor is given by

h̃̃h̃h = Fh(xxx,yyy) = arg max
h∈H(xxx,yyy)

〈wwwt,ΦΦΦ(xxx,hhh)〉

where wwwt comprises the model parameters in the t-th training iteration. The trees in
H(xxx,yyy) are subgraphs of the constrained candidate pairs graph G(xxx,yyy), which is obtained
by removing intercluster arcs regarding the correct clustering yyy from the candidate pairs
graph G(xxx). Regarding the artificial arcs, for each cluster in yyy, G(xxx,yyy) includes only
one arc that connects the artificial node to the first mention of the cluster. Hence, the
constrained document tree can only include arcs between mentions that lie in the same
cluster plus one arc from the artificial root node to each cluster. We use the constrained
document tree h̃̃h̃h as the ground truth in the current perceptron iteration.

It is worth noting that, as we heuristically filter arcs out of G(xxx), a correct cluster
can be disconnected in G(xxx,yyy). In this situation, the prediction of a completely correct
clustering is impossible; that is, Fy(Fh(xxx,yyy)) 6= yyy for any model parameters. However,
such cases are rare, given that the recall of the used sieves is approximately 90%. More-
over, the essential arcs are missing in both G(xxx) and G(xxx,yyy), and thus the constrained
document tree h̃̃h̃h, which is used as the ground truth, corresponds to the best possible
clustering given the candidate arcs.

Next, we predict the document tree ĥ̂ĥh for the training instance (xxx,yyy), using a large
margin version of the document tree predictor. This modified predictor uses a large
margin trick (Tsochantaridis et al. 2005; Fernandes and Milidiú 2012) that embeds a
loss function into the prediction problem. As is usual in such methods, the large margin
training improves the quality of the learned model. In Section 8, we present experimen-
tal evidence of this behavior. The large margin predictor for a training example (xxx,yyy) is
given by

ĥ̂ĥh = arg max
hhh∈H(xxx)

〈wwwt,ΦΦΦ(xxx,hhh)〉+ C · `r(hhh, h̃̃h̃h)

where `r is a non-negative loss function that measures how much a document tree hhh
differs from the constrained document tree h̃̃h̃h, which is the ground truth for the current
iteration. The loss function measures the impurity in the predicted document tree, and
C is a loss parameter tuned on the development set. In our model, we use a loss function

813

Computational Linguistics Volume 40, Number 4

that simply counts how many arcs are different in a given tree hhh compared to the current
iteration ground truth h̃̃h̃h, that is,

`r(hhh, h̃̃h̃h) =
∑

j=1,...,N

111[hhh(j)6=h̃̃h̃h(j)] · (1 + r · 111[hhh(j)=0])

where 111[q] is equal to 1 if predicate q is true and 0 otherwise; hhh(j) indicates the parent of
mention j in tree hhh; and r is the root loss value that scales the loss value for artificial arcs.
This large margin trick is only applied during training because its purpose is to learn
a model that separates the ground truth tree from any alternative tree by a distance
proportional to the loss of the alternative tree. The greater the loss `r(hhh, h̃̃h̃h) of a candidate
tree hhh, the smaller its score 〈wwwt,ΦΦΦ(xxx,hhh)〉 must be to avoid model updates during the
current iteration.

Observe that to find h̃̃h̃h and ĥ̂ĥh, we use the Chu-Liu-Edmonds algorithm with different
arc sets and, due to the loss function, different arc costs. Nevertheless, the optimization
algorithm is identical in both cases because the loss function can be factored along
arcs. Thus, in the large margin predictor, we simply add the loss function values to
the original arc weights. Then, we use the Chu-Liu-Edmonds algorithm to predict the
optimum tree on the graph with modified arc weights. Different loss functions can be
used in the large margin predictor. However, if the loss function does not factor along
arcs, the prediction problem will be different, and, consequently, another optimization
algorithm will be required. For instance, to use the CoNLL metrics as loss functions may
be practically infeasible. These metrics are based on very strong, global dependencies
along the output structure, and the resulting optimization problem will thus be much
harder. Our simple loss function relies on the latent trees to be effective and computa-
tionally efficient.

The model update is determined by the difference between the constrained docu-
ment tree h̃̃h̃h and the document tree ĥ̂ĥh predicted by the large margin prediction algorithm,
that is,

wwwt+1 ← wwwt + ΦΦΦ(xxx, h̃̃h̃h)−ΦΦΦ(xxx, ĥ̂ĥh)

In Figure 6, we depict the proposed averaged large margin latent structured per-
ceptron algorithm for the mention clustering subtask. Similar to its univariate counter-
part (Rosenblatt 1957), the averaged large margin latent structured perceptron is an

www0 ← 000
t← 0
while no convergence

for each (xxx,yyy) ∈ D
h̃̃h̃h← arg maxh∈H(xxx,yyy)〈wwwt,ΦΦΦ(xxx,hhh)〉
ĥ̂ĥh← arg maxh∈H(xxx)〈wwwt,ΦΦΦ(xxx,hhh)〉+ C · `r(hhh, h̃̃h̃h)
wwwt+1 ← wwwt + ΦΦΦ(xxx, h̃̃h̃h)−ΦΦΦ(xxx, ĥ̂ĥh)
t← t + 1

www← 1
t
∑t

i=1 wwwi

Figure 6
Averaged large margin latent structured perceptron algorithm.

814

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

on-line algorithm that iterates through the training set. For each training instance, it
uses the given input and the current model estimate to perform three major steps: (i) a
constrained document tree prediction h̃̃h̃h, which we call the iteration ground truth; (ii)
an output prediction ĥ̂ĥh; and (iii) a model update based on the difference between the
predicted output features and the current iteration ground truth features. We use the
averaged structured perceptron, as suggested by Collins (2002), because it provides a
more robust model.

The latent structured perceptron algorithm learns to predict document trees that
assist in the target task, which is clustering. Thereafter, for the prediction of an unseen
document xxx, the document tree predictor Fh(xxx) is applied using the learned model www.
It finds the maximum scoring document tree ĥ̂ĥh ∈ H(xxx) over the given candidate pairs
graph by applying the Chu-Liu-Edmonds algorithm. Its output, in turn, is fed to Fy(ĥ̂ĥh)
to finally give the predicted clusters.

7. Empirical Evaluation Setting

We evaluate our system using the data sets from the CoNLL-2012 Shared Task. In this
section, we first briefly describe these data sets. Next, we detail the system settings
adopted in the experiments for different steps of our system, including candidate
pair generation, basic feature setting, and entropy-guided feature induction. We also
describe the minor adaptations that are necessary for each language. Finally, we present
the evaluation metrics used to assess our system.

7.1 Data Sets

The CoNLL-2012 Shared Task is dedicated to the modeling of unrestricted coreference
resolution in three languages: Arabic, Chinese, and English. Its data sets are provided by
the OntoNotes project (Weischedel et al. 2011). In addition to coreference information,
the shared task data sets contain various annotation layers, namely, part-of-speech
(POS) tags, syntactic parses, word senses, named entities (NE), and semantic roles (SRL).
The task consists of the automatic identification of coreferring mentions of entities and
events given the predicted information on other layers.

The data set for each language comprises three subsets: training, development,
and test. We report our system performances on the development and test sets. The
development results are obtained using systems that have been trained only on the
training sets. However, the test set results are obtained by training on a larger data set
that is obtained by concatenating the training and development sets. During training,
we use the gold standard input features, which produce better performing models than
do those trained on the automatic values. We believe that the use of gold values during
training avoids the additional noise introduced by automatic features. However, during
evaluation, we always use the automatic values provided in the data sets.

7.2 Candidate Pair Generation

The input for the prediction problem is the candidate pairs graph G(x). Recall that for a
given input xxx = (ddd,mmm), there is a node in G(x) for each mention in mmm. Ideally, we could
consider the complete graph for each document, where every mention pair would be an
option for building the document tree. However, for a document with many mentions,
the resulting graph might be very large; moreover, a large portion of its arcs can be

815

Computational Linguistics Volume 40, Number 4

easily identified as unnecessary or even incorrect. Thus, we filter the mention pairs that
are less likely to be coreferent out of the candidate pairs graph.

We choose the candidate arcs by simply adapting the sieves method proposed by
Lee et al. (2013) to English coreference resolution. Lee et al. propose a list of handcrafted
rules that are sequentially applied to mention pairs to iteratively merge mentions into
entity clusters. These rules are termed sieves because they filter the correct mention
pairs. In Lee et al.’s system, sieves are ordered from higher to lower precision. However,
in our filtering strategy, precision is not a concern, and the application order is not
important. The objective here is to build a small set of candidate arcs that show good
recall. Additionally, we do not want sieves that are strongly language dependent, as
our target is multilingual coreference resolution. Hence, we select the most general of
Lee et al.’s sieves. The resulting sieves can also be directly applied to the Arabic and
Chinese data sets provided in the CoNLL-2012 Shared Task. Therefore, given a mention
pair (i, j), where i appears before j in the text, we create a directed arc e = (i, j) if at least
one of the following conditions holds:

1. Distance – the number of mentions between i and j is not greater than a
given threshold.

2. Named Entity Alias – i and j are named entities of the same kind, plus:

(a) Person – the head word of one mention is part of the other mention,
such as Obama and Barack Obama.

(b) Organization – the head word of one mention is contained in the
other, or one is an acronym of the other.

3. Head Word Match – the head word of i matches the head word of j.

4. Shallow Discourse – shallow discourse attributes match for both mentions.
This sieve comprises a set of rules proposed by Lee et al. (2013) based on
mention and speaker attributes that are available in the data set. Basically,
the number and gender of speakers and mentions must follow a small set
of patterns. For instance, two first-person pronouns assigned to the same
speaker is a match.

5. Pronouns – j is a pronoun, and i has the same gender, number, speaker, and
animacy as j, using the number and gender data from Bergsma and Lin
(2006).

6. Pronouns and NE – j is a pronoun, and i is a compatible pronoun or named
entity.

Sieves 2–6 are adapted from Lee et al. (2013). Most of these sieves are relaxed
versions of the ones proposed by Lee et al. (2013). Sieve 1 is introduced by us to raise
recall while avoiding strongly language-dependent sieves.

7.3 Basic Feature Setting

We use 70 basic features to describe a candidate arc. All of them give hints on the
coreference strength of the mention pair connected by the arc. These features provide
lexical, syntactic, semantic, and positional information. One of the semantic features
is the prediction of the baseline system proposed by dos Santos and Carvalho (2011),
which classifies the candidate arc as either coreferent or not. The other features have

816

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

been adapted from previously proposed features (Ng and Cardie 2002; Sapena, Padró,
and Turmo 2010; dos Santos and Carvalho 2011).

In Table 2, we describe the set of basic features used in our system. The Id column
identifies each feature. The Type column indicates the value type of each feature, for
example, Boolean (yes, no) or ternary (yes, no, not applicable). The # column indicates
how many basic features correspond to each description.

Table 2
Description of all 70 basic features.

Id Description Type #

Lexical Features 25
L1 Head word of i (j) word 2
L2 String matching of i and j boolean 1
L3 String matching of the head words of i and j boolean 1
L4 Both i and j are pronouns and their strings match ternary 1
L5 Both i and j are not pronouns and their string match ternary 1
L6 Previous and next two words of i (j) word 8
L7 Number of tokens in i (j) integer 2
L8 Edit distance of head words of i and j integer 1
L9 Edit distance of i and j after removing determiners integer 1
L10 i (j) is a definite noun phrase boolean 2
L11 i (j) is a demonstrative noun phrase boolean 2
L12 The head word of both i and j are proper nouns boolean 1
L13 Both i and j are proper names and their strings match ternary 1
L14 Both i and j are proper names and their head word strings match ternary 1

Syntactic Features 28
Sy1 POS tag of the head word of i (j) POS tag 2
Sy2 Previous and next two POS tags of i (j) POS tag 8
Sy3 i (j) is a pronoun boolean 2
Sy4 Gender of i (j), if pronoun f, m, n/a 2
Sy5 i and j are both pronouns and agree in gender ternary 1
Sy6 i and j are both pronouns and agree in number ternary 1
Sy7 i (j) is a proper name boolean 2
Sy8 i and j are both proper names boolean 1
Sy9 Previous and next predicate of i (j) within its sentence verb 4
Sy10 i and j are pronouns and agree in number, gender, and person ternary 1
Sy11 Noun phrase embedding level of i (j) in the syntactic parse integer 2
Sy12 Number of embedded noun phrases in i (j) integer 2

Semantic Features 13
Se1 Baseline system prediction binary 1
Se2 Sense of the head word of i (j) sense 2
Se3 Named entity type of i (j) NE tag 2
Se4 i and j have the same named entity type ternary 1
Se5 Previous and next semantic roles for i (j) within its sentence SRL tag 4
Se6 Concatenation of semantic roles of i and j for the same predicate, if they

are in the same sentence
(SRL tag)2 1

Se7 i and j have the same speaker ternary 1
Se8 j is an alias of i as suggested by Ng and Cardie (2002) boolean 1

Positional Features 4
P1 Distance between i and j in number of sentences integer 1
P2 Distance between i and j in number of mentions integer 1
P3 Distance between i and j in number of person names, when i and j are

both pronouns or one of them is a person name
integer 1

P4 One mention is in apposition to the other boolean 1

817

Computational Linguistics Volume 40, Number 4

Although our feature set does not include negative features such as Ng and Cardie’s
(2002) binding constraints and maximal NP, this type of feature can be used in our
system. An arc that activates one or more negative features is highly unlikely to be in
the solution. In other words, if a mention pair has the value yes for one or more negative
features, the two mentions are unlikely to be coreferent. When using negative features,
the structured perceptron will most likely learn negative weights for these features.
Consequently, arcs that activate negative features have a lower chance of inclusion in
the solution because these arcs tend to decrease the coreference tree weight.

7.4 Language Specifics

Our system can be easily adapted to different languages given the basic features. In
our experiments, only minor changes are needed to train and apply the system to three
different languages. The adaptations are due to (i) the lack of input features for some
languages; (ii) the different POS tagsets across data sets; and (iii) the creation of static
lists of language-specific pronouns. The necessary adaptations are restricted to only two
preprocessing steps: basic features and coreference arcs generation.

Some input features available in the English data set are not available in the Arabic
or Chinese data sets. The Arabic data set does not contain named entity, semantic role
labeling, and speaker annotations. Therefore, for Arabic, we do not derive the following
basic features: Sy9, Se3, Se4, Se5, Se6, Se7, and P3. For Chinese, information related to
named entities is not provided. Thus, we do not derive the following basic features: Se3,
Se4, and P3. Additionally, the Chinese data set uses a different POS tagset. Hence, some
mappings are used during the basic feature derivation stage.

The lack of input features for Arabic and Chinese also impact the sieve-based
candidate pair generation step. For Chinese, we do not use Sieve 5, and, for Arabic,
we only use Sieves 1, 3, and 6. Sieve 6 is not used for the English data set because it is a
specialization of Sieve 5. The first sieve threshold is 4 for Arabic and Chinese and 8 for
English. These values have been chosen to optimize recall in the development sets and
simultaneously fit the training data sets in memory.

In the arc generation and basic feature derivation steps, our system uses static lists
of language-specific pronouns. In our experiments, we use the POS tagging information
and the gold entity clusters to automatically extract these pronoun lists from the training
data.

Our system submitted to the CoNLL-2012 Shared Task ignores arcs linking nested
mentions. Although such mentions are never coreferent in Arabic or English, the Chi-
nese data sets include many nested coreferring mentions. Hence, in the latest version of
our system, we include such arcs for the Chinese language.

7.5 EFI

Using EFI, we can automatically generate feature templates without human effort,
which allows us to easily experiment with different template sets. In our experiments,
we use 70 basic features and apply EFI to generate feature templates from them. Only
58 basic features appear at least once in the template set of any of the three languages.
In decreasing frequency order, the ten most frequent basic features in the templates
are Se1, L13, L3, L1j, Se7, Sy3j, L1i, Se4, Sy12i, and Sy3i. These features appear closest
to the root in the EFI auxiliary decision tree. When following our template generation
method, they are the most discriminative features. Twelve of the 70 basic features do
not appear in any template, namely, Sy4, Sy7j, Sy9, Se5, and Se6. Thus, these features

818

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

are not used when training with the structured perceptron algorithm. Note that features
Sy4 and Sy7j carry some information that is already present in other features, such as
Sy10 and L12, respectively. Features Sy9, Se5, and Se6 are all derived from the SRL basic
features. Therefore, when following our template generation strategy, SRL information
contributes little to the coreference resolution task.

In our first experiments, for each language, we create a template set by applying
EFI to the training corpus of that language. However, merging different template sets
usually produces better results, even when merging template sets of different lan-
guages. For instance, for the Chinese and Arabic languages, merging their templates
sets with a template set generated for the English language produces an improvement
of approximately 2% on the MUC F-score. We believe this behavior to be due to the
greedy nature of the decision tree induction algorithm used in EFI and the variation
in annotation quality and size of the different data sets. It is quite likely that the
automatically generated feature templates are not optimal.

In our final English language system, we use a set of 196 templates obtained by
merging the output of two independent EFI executions. These two runs are based on
two different training data sets comprising (a) the mention pairs produced by Sieves 2–
5; and (b) the mention pairs produced by all sieves. For Chinese and Arabic, the template
sets automatically generated using the corresponding training data sets are merged with
template set (a) generated for the English language. The final set for Chinese comprises
197 templates, and the final set for Arabic comprises 223 templates.

Note that the number of templates generated by EFI depends on the number of
basic features, the size of the training set, and the settings of the decision tree algorithm.
The number of feature templates has a direct impact on memory use, as increasing the
number of templates increases the number of binary contextual features instantiated.
Hence, our main restriction when automatically creating and merging feature template
sets is memory. Using the template sets previously mentioned, we are able to train our
English system, which corresponds to the largest data set, using approximately 48 GB
RAM. For the Arabic and Chinese systems, less than 20 GB RAM is used during training.

7.6 Evaluation Metrics

Evaluating coreference systems is a difficult task. The main issue is that coreference
information is highly faceted, and the value of each facet varies substantially from
one application to another. Thus, when reporting and comparing coreference system
performances, it is very difficult to define one metric that fits all purposes. Therefore,
we follow the methodology proposed in the CoNLL-2012 Shared Task to assess our
systems, as it combines three of the most popular metrics. The metrics used are the link-
based MUC metric (Vilain et al. 1995), the mention-based B3 metric (Bagga and Baldwin
1998), and the entity-based CEAFe metric (Luo 2005). All these metrics are based on
precision and recall measures, which are combined to produce an F-score value. The
mean F-score of these three metrics gives a unique score for each language. Additionally,
when appropriate, the official CoNLL-2012 Shared Task score is reported, which is the
average of the F-scores for all languages. We denote this metric as the CoNLL score.

Another important aspect of coreference evaluation is mention matching. Some
methodologies, such as the ones used in the MUC and ACE evaluations, consider
approximate matching of mention spans. However, the CoNLL-2012 Shared Task eval-
uation considers only exact span matching.

We use the CoNLL-2012 Shared Task evaluation scripts version 4, which is the same
version used to produce the official ranking in this shared task. We use this version

819

Computational Linguistics Volume 40, Number 4

to keep our results comparable with most of the results reported in the literature. It is
important to note that, in early 2014, a committee of researchers revised some of the
evaluation metrics and released a new version of these scripts.1 Although this revision
changes the absolute scores, the ranking of the top performing systems, including ours,
remain the same.

8. Empirical Results

In this section, we present nine sets of empirical findings on the CoNLL-2012 Shared
Task data sets. In Section 8.1, we demonstrate our system’s overall quality and compare
it with state-of-the-art systems. In Section 8.2, we assess the mention detection step. Sec-
tion 8.3 details the results of the candidate pair generation step. In Section 8.4, we assess
EFI, showing that this method significantly improves the resulting system performance.
In Section 8.5, we present experimental evidence that latent trees improve the prediction
performance of our system compared to simple static structures. In Section 8.6, we show
that the root loss value also significantly improves our system performances. Section 8.7
presents results that show the contribution of the large margin trick. In Section 8.8, we
show that by enhancing our Chinese modeling with nested mentions, we achieve state-
of-the-art performance for this language. Finally, in Section 8.9, we present a detailed
analysis of the different types of errors in our system output.

In the reported experiments, we use a computer with a 2.4-GHz quad-core pro-
cessor and 48 GB RAM. We report the processing times for the English data sets. For
the other languages, these times are proportionally lower. First, regarding training, the
feature induction procedure takes 27.4 minutes; loading the training data set and gener-
ating features from the learned templates take 7.5 minutes; and the training algorithm
takes 57.5 minutes. The test procedure on the development set takes 6 seconds to load
the data set, 45 seconds to load the model and to generate features from templates, and
30 seconds to predict the output structures for all documents. Most of these procedures
could be further optimized in terms of both execution time and memory use.

Regarding the size of the learned models, the Arabic model has approximately
8.1 million parameters; the Chinese model has approximately 9.7 million parameters;
and the English model has approximately 15.5 million parameters.

8.1 State-of-the-Art Systems

In Table 3, we present the per-language CoNLL scores of the best performing systems
on the CoNLL-2012 Closed Track Shared Task test sets. The first row of this table
corresponds to the last version of our system, and the second row corresponds to our
official entry in the CoNLL-2012 Shared Task. The difference between these two versions
is the inclusion of candidate arcs linking nested mentions for the Chinese language. By
including such arcs, the score increases by almost 4.5 points for that language. The last
two rows of this table correspond to the competitors that are ranked second (Björkelund
and Farkas 2012) and third (Chen and Ng 2012) in the shared task. Our system obtains
the best score for each language.

From Table 3, it can be further observed that the best scores on Chinese and English
are similar. However, the performances on the Arabic language are much lower. Given
the smaller size of the Arabic training corpus, this reduction is expected.

1 http://code.google.com/p/reference-coreference-scorers/.

820

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

Table 3
State-of-the-art systems for multilingual unrestricted coreference resolution in the CoNLL-2012
Shared Task data sets. Performances on the test sets for Arabic (AR), Chinese (CH), English (EN),
and the official shared task score.

Reference AR CH EN CoNLL Score

This work 54.22 62.87 63.37 60.15
Fernandes, dos Santos, and Milidiú (2012) 54.22 58.49 63.37 58.69
Björkelund and Farkas (2012) 53.55 59.97 61.24 58.25
Chen and Ng (2012) 47.13 62.24 59.69 56.35

The detailed performances of the best available systems for the Arabic CoNLL-2012
Shared Task test set are presented in Table 4, where we report the recall (R), precision
(P), and F-score (F) for the three metrics considered in the CoNLL-2012 Shared Task.
Additionally, in the final column of this table, we present the mean F-score over the
three metrics, which gives a unique per-language score. In these results, we see that
the runner-up system outperforms our system by approximately 1.4 points on both the
MUC and B3 F-scores. However, our system outperforms theirs on CEAFe by almost
5 points. In the end, our system achieves a mean score that is 0.67 point higher than
Björkelund and Farkas’ system. The third-ranked system (Uryupina, Moschitti, and
Poesio 2012) scores much lower, being competitive only on the B3 metric, in which it
achieves a substantially higher recall.

The detailed results of the best performing systems for the Chinese language
are presented in Table 5. For this language, our system is competitive on all metrics
and particularly on MUC, where our system outperforms all competitors by more
than 2.5 points of F-score. Note that this result is achieved by considering the nested
mentions.

In Table 6, we present the detailed performances of the state-of-the-art systems for
the English language. Our system outperforms all others by more than 2 points on the
mean score. Moreover, it achieves the best F-scores on the three metrics used, being

Table 4
Detailed performance of state-of-the-art systems on the Arabic CoNLL-2012 Shared Task test set.

System MUC B3 CEAFe Mean
R P F R P F R P F

This work 43.63 49.69 46.46 62.70 72.19 67.11 52.49 46.09 49.08 54.22
Björkelund and Farkas (2012) 43.90 52.51 47.82 62.89 75.32 68.54 48.45 40.80 44.30 53.55
Uryupina et al. (2012) 41.33 41.66 41.49 65.77 69.23 67.46 42.43 42.13 42.28 50.41

Table 5
Detailed performance of state-of-the-art systems on the Chinese CoNLL-2012 Shared Task test set.

System MUC B3 CEAFe Mean
R P F R P F R P F

This work 59.20 71.52 64.78 67.17 80.55 73.25 57.46 45.20 50.59 62.87
Chen and Ng (2012) 59.92 64.69 62.21 69.73 77.81 73.55 53.43 48.73 50.97 62.24
Yuan et al. (2012) 62.36 58.42 60.33 73.12 72.67 72.90 47.10 50.70 48.83 60.69
Björkelund and Farkas (2012) 58.72 58.49 58.61 71.23 75.07 73.10 48.09 48.29 48.19 59.97

821

Computational Linguistics Volume 40, Number 4

Table 6
Detailed performance of state-of-the-art systems on the English CoNLL-2012 Shared Task test set.

System MUC B3 CEAFe Mean
R P F R P F R P F

This work 65.83 75.91 70.51 65.79 77.69 71.24 55.00 43.17 48.37 63.37
Martschat et al. (2012) 65.21 68.83 66.97 66.50 74.69 70.36 48.64 44.72 46.60 61.31
Björkelund and Farkas (2012) 65.23 70.10 67.58 65.90 75.24 70.26 48.60 43.42 45.87 61.24

outperformed only by Martschat et al.’s system on the B3 recall and CEAFe precision
values. These achievements are sound, especially considering the large research effort
applied to the English language.

8.2 Mention Detection

The first step of our coreference resolution system is mention detection, where we seek
to detect all possible mentions in the given document. In this preliminary step, recall
is much more important than precision because missing mentions correspond to unre-
coverable errors for the subsequent steps. Moreover, in the CoNLL-2012 unrestricted
coreference resolution task, singleton mention clusters are treated as precision errors.
Thus, the performance of our mention detector must be checked only on the set of non-
singleton mentions.

In our system, we remove singleton mentions only after the mention clustering step.
Hence, for each model, we assess mention detection twice: before and after the men-
tion clustering step. The first evaluation is performed immediately after the mention
detection step but before the mention clustering step, when our system has neither
identified nor excluded singleton mentions. The second evaluation is performed on
the final output of our system, when clusters comprising only one mention have been
deleted. In Table 7, we present these performances on the development sets of the three
languages. The Total column indicates how many mentions are annotated in the gold
standard data set, which comprises non-singletons only. The Extracted column indicates
the number of mentions detected by our system, and the Correct column indicates how
many of them are correct. The columns R, P, and F correspond, respectively, to the recall,
precision, and F-score of mentions. As in the CoNLL-2012 Shared Task, a mention is
considered correct only when its exact span has been detected.

Table 7
Mention detection performances on the development sets before and after mention clustering.

Language Total After Mention Extracted Correct R P F
Clustering?

Arabic 3,316 No 16,209 2,916 87.93 17.99 29.86
Yes 3,094 2,036 61.39 65.80 63.52

Chinese 14,183 No 39,475 12,558 88.54 31.81 46.80
Yes 10,655 8,346 58.84 78.32 67.20

English 19,155 No 55,738 17,746 92.64 31.83 47.39
Yes 16,738 13,795 72.01 82.41 76.86

822

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

In Table 7, we can observe that before mention clustering, the precision is very low
for all languages: our system extracts many singleton mentions because it privileges
recall over precision. Conversely, it correctly detects approximately 90% of the non-
singleton mentions for all languages. After the mention clustering step, the mention
detection precision increases because many correctly identified singletons are excluded.
Of course, some non-singleton mentions are wrongly identified as singletons in the
mention clustering step, and there is a consequent drop in recall.

8.3 Candidate Pair Generation

The candidate pair generation step is responsible for creating the candidate pairs graph
G(xxx) given the set of detected mentions. Our approach to this subtask is based on the
sieves proposed by Lee et al. (2013). The purpose of using sieves in this step is twofold.
First, when generating G(xxx), we want to include only the arcs that link mentions that
are likely to be coreferent to avoid dealing with a dense graph in the subsequent steps,
which involve arc feature generation and solving maximum branching problems on
G(xxx). Second, we do not want to generate too many precision errors for the subsequent
steps by linking mentions that are not likely to be coreferent. Conversely, the sieves can-
not be too restrictive, or they would miss too many intracluster arcs and put coreferent
mentions in different connected components. If two coreferent nodes m1 and m2 belong
to different connected components in G(xxx), the coreference tree predictor is unable to
generate a tree on G(xxx) containing the coreferent nodes m1 and m2. Therefore, there is a
trade-off between the restrictiveness of the sieves and the coreference resolution recall.
In this subsection, we evaluate the MUC recall of the candidate arcs in G(xxx), which
corresponds to the upper bound for our coreference resolution system when this graph
is given as input to the tree predictor.

In Tables 8, 9, and 10, we report the impact of different combinations of sieves on
the MUC recall of the candidate arcs for the Arabic, Chinese, and English development
sets, respectively. These results help us to understand the contribution of each sieve
and the overlap among them. It is important to note that, for each document in the
development set, one distinct candidate pairs graph is generated. Hence, in Tables 8–
10, we show an overall assessment of the graphs generated for all documents in the
respective development sets. The first row of each table corresponds to the case where
all graphs contain all possible candidate pairs, which means filtering no arcs out. The
recall errors in this case are due to missing mentions, which means that these errors
occur in the mention detection step. In addition to recall, for each sieve set configuration,
we report the recall percentage (% Recall), which gives the percentage of the maximum
recall (first row) achieved by the configuration. The tables also present the number of

Table 8
Performances of the Arabic sieves on the development set.

Sieves Recall % Recall # Arcs % Arcs

All arcs 81.10 100.0 3,139,572 100.0

(6) 27.17 33.5 60,579 1.9
(1) 41.03 50.6 139,099 4.4
(3) 41.41 51.1 26,487 0.8
(3) and (1) 64.38 79.4 164,017 5.2
(3), (1), and (6) 66.56 82.1 216,252 6.9

823

Computational Linguistics Volume 40, Number 4

Table 9
Performances of the Chinese sieves on the development set.

Sieves Recall % Recall # Arcs % Arcs

All arcs 84.14 100.0 6,193,390 100.0

(4) 7.45 8.9 4,596 0.1
(2) 18.78 22.3 17,964 0.3
(6) 20.78 24.7 50,432 0.8
(1) 41.62 49.5 260,590 4.2
(3) 65.86 78.3 83,523 1.3
(3) and (1) 75.85 90.1 335,447 5.4
(3), (1), and (6) 77.32 91.9 373,820 6.0
(3), (1), (6), and (2) 77.57 92.2 377,751 6.1
(3), (1), (6), (2), and (4) 77.58 92.2 377,851 6.1

Table 10
Performances of the English sieves on the development set.

Sieves Recall % Recall # Arcs % Arcs

All arcs 90.22 100.0 7,198,159 100.0

(2) 9.82 10.9 7,628 0.1
(4) 14.30 15.9 26,561 0.4
(5) 41.98 46.5 69,143 1.0
(3) 54.45 60.4 94,571 1.3
(1) 66.01 73.2 615,909 8.6
(1) and (3) 83.01 92.0 696,370 9.7
(1), (3), and (5) 83.93 93.0 757,913 10.5
(1), (3), (5), and (4) 84.12 93.3 763,585 10.6
(1), (3), (5), (4), and (2) 84.54 93.7 764,517 10.6

generated candidate arcs and the percentage of arcs in relation to the maximum number
of arcs. Note that for the Chinese language, using only 6.1% of the possible arcs, we
achieve 92.2% of the maximum recall. For the English language, we achieve 93.7% of
the maximum recall using only 10.6% of the possible arcs. These results demonstrate
that our sieve sets for these two languages achieve a good trade-off between the restric-
tiveness of sieves and the coreference resolution recall. For the Arabic language, there is
still considerable room for improvement in the aforementioned trade-off.

8.4 EFI

We use entropy-guided feature induction to automatically generate nonlinear features
by conjoining the 70 basic features. In this section, we compare our EFI-based system
with systems trained using basic features alone. It is important to note that these 70 basic
features include several complex features. Some of these features are even conjunctions
of simpler basic features, and others provide complex task dependent information, such
as head words and agreement on number and gender. These 70 basic features were
manually generated by domain experts and encode valuable coreference information.

In Table 11, we report the performance of a system trained with the 70 basic features
alone (upper half) and the performance of our EFI-based system (lower half). We
observe that the CoNLL score improves impressively, by 8.54 points, when using EFI

824

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

Table 11
Impact of EFI on development sets for all languages using all 70 basic features.

EFI Lang MUC B3 CEAFe Mean
R P F1 R P F1 R P F1

No

Arabic 28.26 48.98 35.84 44.75 74.56 55.93 47.48 26.80 34.26 42.01
Chinese 48.58 73.16 58.39 56.96 83.60 67.76 56.42 34.74 43.00 56.38
English 51.32 73.28 60.37 54.85 78.06 64.43 50.87 30.71 38.30 54.37

CoNLL Score 50.92

Yes

Arabic 43.00 47.87 45.30 61.41 70.38 65.59 49.42 44.19 46.66 52.52
Chinese 60.35 70.56 65.05 67.37 79.49 72.93 55.15 44.94 49.52 62.50
English 64.88 74.74 69.46 66.53 78.28 71.93 54.93 43.68 48.66 63.35

CoNLL Score 59.46

to generate new features. Moreover, EFI consistently outperforms the baseline on all
languages for all metrics.

Informative basic features usually require domain experts to define and select them.
This process is expensive and highly language-dependent. To assess EFI’s inductive
power, we perform another experiment. We randomly remove 30% of the original basic
features, retaining only 49 of the 70 basic features. Next, we evaluate the performance
impact of this feature reduction on the English development set. Again, we evaluate two
systems: one that uses only basic features and another that uses EFI to generate features.
We repeat this procedure 20 times and average the results. In Table 12, we present the
averaged results for the English development set. The final column of this table presents
the standard errors of the three-metric mean. We can see that EFI improves the mean
score by almost 6 points.

It is worth noting that, for the EFI results reported in Table 12, we do not merge
different template sets, as described in Section 7.5. For this experiment, to simplify the
comparison, we use only the template set derived using all English sieves.

8.5 Latent Trees

One key modeling aspect of our method consists of representing coreference clusters
as latent trees. We already argued in Section 4 that using directed trees to represent
coreference clusters is linguistically and computationally plausible. Here, we present
experimental evidence that latent trees are better than a simple static structure in terms
of prediction performance. Our findings are aligned with the results reported by Yu and
Joachims (2009), who compare undirected latent trees to correlation clustering.

Table 12
Impact of EFI on system performance for the English development set when using 70% of the
basic features randomly selected. The reported values are averages of over 20 repetitions of this
experiment. The final column indicates the mean standard error.

EFI MUC B3 CEAFe Mean Standard

R P F1 R P F1 R P F1 Error

No 70.89 49.68 58.41 76.77 53.99 63.38 29.90 49.22 37.19 52.99 0.25
Yes 70.73 59.17 64.43 75.07 61.94 67.87 39.11 51.57 44.48 58.93 0.24

825

Computational Linguistics Volume 40, Number 4

To evaluate the contribution of latent trees to our system performance, we use a
simple approach to generate static representations of the coreference clusters in the
training set. For a given coreference cluster, we generate a chain of mentions by con-
necting each mention to the previous mention in the same cluster, as in Soon, Ng, and
Lim (2001). After generating a chain for each cluster in a document, the first mention
of each chain is connected to the artificial root node, resulting in a static document
tree. Then, we use these static trees as the golden standard for training. Therefore,
the perceptron algorithm learns to predict chains of coreferring mentions instead of
general trees. However, for some clusters, due to missing arcs that are filtered out in the
candidate pair generation step, it is impossible to generate a chain. In these cases, we
connect a mention to the closest previous mention such that the two mentions are in the
same cluster, and there is an arc connecting them in the training set. In this experiment,
we do not need to use the Latent Structured Perceptron training algorithm. Instead, we
use the ordinary Structured Perceptron.

In Table 13, we present the performances of two systems on the CoNLL-2012 devel-
opment sets: the system trained with static chains to represent coreference clusters and
our system based on latent trees. We see that latent trees improve the CoNLL score by
more than 1 point. Additionally, improvements are observed on all languages for almost
all metrics, except for Arabic MUC. Among the three languages, English presents the
largest improvement, more than 2 points, when latent trees are used. In contrast, the
impact of latent trees for the Arabic corpus is marginal.

It is also important to note that in addition to these performance improvements,
latent structures present another benefit. Latent structures simplify modeling be-
cause they avoid the need for a heuristic to derive static structures. Latent struc-
tures are automatically derived and evolved during training, guided by the annotated
clusters.

8.6 Root Loss Value

Just as some coreference metrics can be more important than others for certain ap-
plications, precision and recall have different values for applications. Specifically, for
the CoNLL score—which is based on the Fβ=1 score—the balance between precision
and recall is important. For this reason, we introduced an important parameter in our
system: the root loss value. This parameter specifies a different loss function value for

Table 13
Latent trees’ effect on development set performances.

Coref. Lang MUC B3 CEAFe Mean
Tree R P F R P F R P F

Chain

Arabic 43.17 48.42 45.64 60.79 70.16 65.14 48.99 43.40 46.03 52.27
Chinese 60.45 67.76 63.90 68.36 77.01 72.43 52.64 45.44 48.78 61.70
English 62.12 73.66 67.40 64.97 76.29 70.18 52.91 40.34 45.78 61.12

CoNLL Score 58.36

Latent

Arabic 43.00 47.87 45.30 61.41 70.38 65.59 49.42 44.19 46.66 52.52
Chinese 60.35 70.56 65.05 67.37 79.49 72.93 55.15 44.94 49.52 62.50
English 64.88 74.74 69.46 66.53 78.28 71.93 54.93 43.68 48.66 63.35

CoNLL Score 59.46

826

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

outgoing arcs in the artificial root node. Observe that, in a document tree, each arc from
the root node corresponds to a cluster. The effect of a root loss value larger than one
is to reduce the creation of new clusters, stimulating larger clusters. Therefore, this
parameter can be used to adjust the balance between precision and recall.

In the upper half of Table 14, we present our system performances on the de-
velopment sets when we set this parameter to one, which is equivalent to not using
this parameter at all. We observe that in this case, the differences between the recall
and precision values are very high on all metrics and languages, lowering the F-score
values. Using the development sets for tuning, we set the root loss value to 6, 2, and
1.5 for Arabic, Chinese, and English, respectively. In the lower half of Table 14, we
present the performances using these settings. We observe that this parameter sub-
stantially improves the balance between precision and recall, consequently increasing
the F-score values. Its effect is accentuated on Arabic and Chinese because the unbal-
ancing issue is worse on these languages. The increase in the CoNLL score is nearly
4 points.

8.7 Large Margin and Averaging

In Figure 7, we show the impact on the MUC F-score provided by the large margin
trick using our choice for the loss function and the averaged perceptron. Throughout
the training procedure, we report the per-epoch performances of the current model
on the English development set during the first 50 epochs. Each epoch corresponds
to iterating over all instances in the training data set. First, we examine the large
margin averaged perceptron with the parameter C equal to 2,000, which is used to
train our best model. Second, we simplify by using the averaged perceptron with no
margin. Using the margin trick, we observe a consistent improvement in all epochs,
and in the final model, we obtain a significant improvement of more than 1%. We
also can see that when not using the averaging procedure, the algorithm eventually
achieves the optimum performance, as occurs after the 25th epoch. However, without
averaging, the performance varies considerably from one epoch to another, which
can be very harmful. Very similar behavior is observed for the Arabic and Chinese
languages.

Additionally, we see that our method seems to converge before 50 epochs, which is
the number of epochs used to train all models used in this work.

Table 14
Root loss value effect on development set performances.

Root Loss Lang MUC B3 CEAFe Mean
Value R P F R P F R P F

Off

Arabic 34.18 58.85 43.25 50.61 82.13 62.63 57.37 33.75 42.49 49.45
Chinese 41.94 85.23 56.22 51.25 93.70 66.26 63.10 29.80 40.48 54.32
English 62.75 77.41 69.31 63.88 81.34 71.56 57.46 41.08 47.91 62.92

CoNLL Score 55.56

On

Arabic 43.00 47.87 45.30 61.41 70.38 65.59 49.42 44.19 46.66 52.52
Chinese 60.35 70.56 65.05 67.37 79.49 72.93 55.15 44.94 49.52 62.50
English 64.88 74.74 69.46 66.53 78.28 71.93 54.93 43.68 48.66 63.35

CoNLL Score 59.46

827

Computational Linguistics Volume 40, Number 4

 63

 64

 65

 66

 67

 68

 69

 70

 5 10 15 20 25 30 35 40 45 50

M
U

C
 F

-s
co

re
 (

%
)

Epochs

Large Margin + Averaging
No Margin

No Averaging

Figure 7
Effect of large margin and averaging on structured perceptron performance.

8.8 Chinese Nested Mentions

Nested noun phrases such as ((the happy boy) from Brazil) are very common. Consid-
ering either all nested noun phrases as coreferring mentions or only the outer noun
phrases as mentions is an annotation design choice. In the CoNLL-2012 data sets, for
both English and Arabic, only the outer noun phrases are considered as mentions. How-
ever, in the Chinese newswire documents, nested mentions are annotated as coreferring
(Chen and Ng 2012). Thus, in this work, we evaluate the effect of using arcs linking
nested mentions for the Chinese language.

First, we observe that the percentage of candidate arcs linking two nested mentions
is 0.41% in the training, 0.34% in the development, and 0.45% in the test subsets of the
Chinese data set. These percentages are calculated over the candidate arcs only (i.e., the
arcs selected by the Chinese sieves). Thus, the computational impact of adding these
arcs is negligible.

Next, we compute two upper bounds that give us insight into the potential im-
provement provided by nested mentions. For that purpose, we select all correct arcs from
the candidate ones and compute the MUC recall of these arcs. When nested mentions
are not included in the candidate arcs, we obtain a MUC recall of 71.29%. However,
when nested mentions are included, we obtain a MUC recall of 77.58%, which is a
significant increase in the performance upper bound. These values are computed using
the development set.

In Table 15, we present in detail the actual impact of nested mentions on our
system performance. The first row shows the results when arcs linking nested men-
tions are included, and the second row shows the results when they are ignored.

828

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

Table 15
Impact of nested mentions on the system performance for the Chinese development set.

Nested MUC B3 CEAFe Mean
Mentions R P F1 R P F1 R P F1

Yes 60.35 70.56 65.05 67.37 79.49 72.93 55.15 44.94 49.52 62.50
No 54.40 68.19 60.52 64.17 78.84 70.76 51.42 38.96 44.33 58.54

Considering these arcs increases our system score on the Chinese language by almost
4 points.

8.9 Error Analysis

In this section, we provide statistics regarding the most common errors within the
outputs of our structure predictor for the development set of each language. Three
steps in our predictor are direct sources of errors: mention detection, candidate pair
generation, and mention clustering. The errors in each step propagate to the next steps.

In Table 16, we report the MUC recall, precision, and F-score after each of these
three key steps. Remember that during mention detection and candidate pair genera-
tion, recall is much more important than precision. Hence, we can observe that recall
is indeed kept much higher than precision during these steps for all languages. For
the Arabic and Chinese languages, the drops in recall are larger than are the drops
for English in both preliminary steps. This behavior is because of missing features
and sieves for these two languages and also because most of the features and sieves
were originally proposed for the English language. In particular, the Arabic candidate
pair generation step generates too many recall errors because it is based on only
three sieves.

As observed in Section 8.2, the inclusion of singleton mentions is responsible
for most of the precision errors during the mention detection step. Our system does
not handle coreferring mentions of events, and it thus does not consider verbs when
creating candidate mentions, which is responsible for many recall errors in this step.
Additionally, there are recall and precision errors due to errors in the automatically

Table 16
Performances on the development sets per system step.

Language Step Recall Precision F-score

Arabic
Mention Detection 81.10 12.29 21.35
Candidate Pairs Generation 66.56 12.45 20.98
Mention Clustering 43.00 47.87 45.30

Chinese
Mention Detection 84.14 22.42 35.41
Candidate Pairs Generation 77.57 22.45 34.82
Mention Clustering 54.40 68.19 60.52

English
Mention Detection 90.22 23.99 37.90
Candidate Pairs Generation 84.54 23.87 37.23
Mention Clustering 64.88 74.74 69.46

829

Computational Linguistics Volume 40, Number 4

generated parse trees. This type of error is more frequent in the Arabic and Chinese
corpora.

Although the candidate pair generation step does not significantly impact the pre-
cision, this step is able to discard a large portion of the candidate arcs, as depicted in
Section 8.3.

In our system, the mention clustering subtask is almost completely solved by the
coreference tree predictor. Now, let us examine the errors generated by this predictor.
For this purpose, we compare each predicted document tree ĥ̂ĥh with the corresponding
constrained document tree h̃̃h̃h. Recall that the latter is the best scoring tree that uses only
intracluster arcs and some additional artificial root arcs. For each incorrectly predicted
arc (i, j) ∈ ĥ̂ĥh that links non-coreferent mentions i and j, let (i∗, j) be its corresponding
correct arc in h̃̃h̃h. For all documents in the development set, we compute the frequency
of the head POS tags of mentions j, i, and i∗. Observe that a constrained document
tree is computed on the graph generated in the candidate pair generation step, which
already includes recall errors. Thus, the frequencies reported here are computed over
the remaining errors.

In Table 17, we present the top 12 errors for each language, where NNP and NR
stand for singular proper noun, NN for singular noun, NNS for plural noun, NT
for temporal noun, PRP for personal pronoun, PRP$ for possessive pronoun, PN for
pronoun, and Root for the artificial root node, which means that the corresponding node
is the root of its coreference subtree.

A highly frequent error of our predictor is to connect a singleton mention to a
coreference tree. This type of error corresponds to 45% of all errors for the Arabic
language, 37.7% for Chinese, and 31.9% for English. The pleonastic it is a particularly
problematic singleton in the English language. Indeed, for English, such cases roughly
correspond to 14.2% of all singleton errors. In Table 18, we present the most frequent
head POS tags for these singleton errors in each language development set. For Arabic
and English, the order among these POS tags is very similar. The most frequent errors
are pronouns, followed by proper nouns. However, in the English language, the propor-
tion of pronouns is much higher than the proportion of proper nouns, most likely due

Table 17
Most frequent errors whenever an incorrect arc (i, j) is predicted instead of the correct arc (i∗, j).

Arabic Chinese English

j i i∗ % j i i∗ % j i i∗ %

NNP NNP Root 15.1 NN Root NN 21.4 PRP PRP Root 9.2
NN Root NN 9.3 NN NN Root 20.9 NNP NNP Root 9.2
PRP NN Root 8.0 PN PN Root 9.3 NN Root NN 8.3
NN NN Root 5.9 NR NR Root 8.0 NN NN Root 6.0
PRP$ NN Root 4.4 NN NN NN 4.7 NNS Root NNS 3.9
PRP NNP Root 3.4 PN PN PN 3.4 PRP PRP PRP 3.2
PRP PRP Root 2.9 PN NN Root 3.4 NNP Root NNP 3.2
NNP Root NNP 2.9 PN Root PN 3.0 PRP NN Root 3.0
PRP PRP$ Root 2.7 NT NT Root 2.2 PRP Root PRP 2.7
NNP NNP NNP 2.5 NR NR NR 1.9 NNP NNP NNP 2.5
NN Root NNP 2.2 NN Root NR 1.8 NN Root NNP 2.5
PRP$ NN NN 2.0 NR Root NR 1.8 PRP NNP Root 2.4

Others 38.7 Others 18.1 Others 43.8

830

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

Table 18
Most frequent singleton errors per head POS tag and language.

Arabic Chinese English

POS % POS % POS %

PRP 35.6 NN 51.1 PRP 43.2
NNP 30.5 PN 25.2 NNP 25.5
PRP$ 19.6 NR 19.1 NN 17.3
NN 12.1 NT 4.7 PRP$ 8.8
NNS 2.2 Others 5.1

to the pleonastic it cases. Surprisingly, in the Chinese language, most singleton errors
are nouns.

9. Conclusion

In this article, we describe a new machine learning system for multilingual unrestricted
coreference resolution, based on two key modeling techniques: latent coreference trees
and entropy-guided feature induction. We use the large margin structured perceptron
as training algorithm. According to our experiments, latent trees are powerful enough
to model the complexity of coreference structures in a document while rendering the
learning problem computationally feasible. Our empirical findings also show that EFI
enables our system to learn effective nonlinear classifiers while using a linear training
algorithm.

We evaluate our system on the CoNLL-2012 Shared Task data sets, which comprise
three languages: Arabic, Chinese, and English. To cope with this multilingual task, our
system needs only minor adaptations due to certain language-dependent aspects of the
used data sets. As far as we know, our system presents the best known performance on
the three languages.

We also provide detailed experimental results that highlight the contribution of
individual parts of our system, providing important insights to researchers interested in
coreference resolution. These results also highlight interesting aspects of our approach
that can be explored for further improvements.

One limitation of the proposed modeling approach is the arc-based features. Such
local information is clearly not sufficient to model all dependencies involved in coref-
erence resolution. It is necessary to consider more complex contextual features. Hence,
in future work, we plan to include higher-order features and cluster-sensitive features.
Higher-order tree-based features have been successfully applied to dependency parsers
(McDonald and Pereira 2006; Koo et al. 2010) and can be used to extend our corefer-
ence system. Cluster-sensitive features can further extend our modeling by considering
features that are more strongly adherent to the coreference task. However, as far as we
know, there is as yet no structure learning system that considers such features. Thus, we
must design new prediction algorithms to cope with this complex context.

Acknowledgments
This work has been partially funded by
Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico (CNPq), Fundação
de Amparo à Pesquisa do Estado do Rio de

Janeiro, and Fundação Cearense de
Apoio ao Desenvolvimento Cientı́fico e
Tecnológico through grants 557.128/2009-9,
E-26/170028/2008, and 0011-00147.01.00/09,
respectively. The first author was also

831

Computational Linguistics Volume 40, Number 4

supported by a CNPq doctoral fellowship
and a doctoral internship from Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel
Superior.

References
Bagga, Amit and Breck Baldwin. 1998.

Algorithms for scoring coreference chains.
In Proceedings of the First International
Conference on Language Resources and
Evaluation Workshop on Linguistics
Coreference, pages 563–566, Granada.

Bansal, Mohit and Dan Klein. 2012.
Coreference semantics from web Features.
In Proceedings of the Annual Meeting of the
Association for Computational Linguistics,
pages 389–398, Jeju Island.

Bengtson, Eric and Dan Roth. 2008.
Understanding the value of features for
coreference resolution. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 294–303,
Honolulu, HI.

Bergsma, Shane and Dekang Lin. 2006.
Bootstrapping path-based pronoun
resolution. In Proceedings of the Annual
Meeting of the Association for Computational
Linguistics, pages 33–40, Sydney.

Björkelund, Anders and Richárd Farkas.
2012. Data-driven multilingual coreference
resolution using resolver stacking.
In Proceedings of the Sixteenth Conference
on Computational Natural Language
Learning: Shared Task, pages 49–55,
Jeju Island.

Björkelund, Anders and Pierre Nugues.
2011. Exploring lexicalized features for
coreference resolution. In Proceedings of
the Fifteenth Conference on Computational
Natural Language Learning: Shared Task,
pages 45–50, Portland, OR.

Cai, Jie, Eva Mujdricza-Maydt, and
Michael Strube. 2011. Unrestricted
coreference resolution via global
hypergraph partitioning. In Proceedings of
the Fifteenth Conference on Computational
Natural Language Learning: Shared Task,
pages 56–60, Portland, OR.

Cai, Jie and Michael Strube. 2010.
End-to-end coreference resolution via
hypergraph partitioning. In Proceedings
of the International Conference on
Computational Linguistics, pages 143–151,
Stroudsburg, PA.

Chang, Kai-Wei, Rajhans Samdani,
Alla Rozovskaya, Nick Rizzolo, Mark
Sammons, and Dan Roth. 2011. Inference
protocols for coreference resolution.
In Proceedings of the Fifteenth Conference

on Computational Natural Language
Learning: Shared Task, pages 40–44,
Portland, OR.

Chen, Chen and Vincent Ng. 2012.
Combining the best of two worlds:
A hybrid approach to multilingual
coreference resolution. In Proceedings of
the Sixteenth Conference on Computational
Natural Language Learning: Shared Task,
pages 56–63, Jeju Island.

Chu, Y. J. and T. H. Liu. 1965. On the shortest
arborescence of a directed graph. Science
Sinica, 14:1,396–1,400.

Collins, Michael. 2002. Discriminative
training methods for hidden Markov
models: Theory and experiments with
perceptron algorithms. In Proceedings of
the Conference on Empirical Methods in
Natural Language Processing, pages 1–8,
Philadelphia, PA.

Culotta, Aron, Michael Wick, and Andrew
Mccallum. 2007. First-order probabilistic
models for coreference resolution. In
Proceedings of the Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 81–88, Rochester, NY.

della Pietra, Stephen, Vincent della Pietra,
and John Lafferty. 1997. Inducing features
of random fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
19(4):380–393.

Denis, Pascal and Jason Baldridge. 2007.
Joint determination of anaphoricity and
coreference resolution using integer
programming. In Proceedings of the
Conference of the North American Chapter
of the Association for Computational
Linguistics: Human Language Technologies,
pages 236–243, Rochester, NY.

Denis, Pascal and Jason Baldridge. 2008.
Specialized models and ranking for
coreference resolution. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 660–669,
Honolulu, HI.

Doddington, G., A. Mitchell, M. Przybocki,
L. Ramshaw, S. Strassel, and
R. Weischedel. 2004. The automatic
content extraction (ACE) program—Tasks,
data, and evaluation. In Proceedings of
the International Conference on LREC,
pages 837–840, Lisbon.

dos Santos, Cı́cero Nogueira and Ruy L.
Milidiú. 2009. Entropy guided
transformation learning. In A.-E.
Hassanien et al., editors, Foundations of
Computational Intelligence (1). Springer,
pages 159–184.

832

http://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2F34.588021
http://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2F34.588021

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

dos Santos, Cı́cero Nogueira and Davi L.
Carvalho. 2011. Rule and tree ensembles
for unrestricted coreference resolution.
In Proceedings of the Fifteenth Conference
on Computational Natural Language
Learning: Shared Task, pages 51–55,
Portland, OR.

Edmonds, J. 1967. Optimum branchings.
Journal of Research of the National Bureau
of Standards, 71B:233–240.

Fernandes, Eraldo R., Cı́cero Nogueira
dos Santos, and Ruy L. Milidiú. 2012.
Latent structure perceptron with feature
induction for unrestricted coreference
resolution. In Proceedings of the Sixteenth
Conference on Computational Natural
Language Learning: Shared Task,
pages 41–48, Jeju Island.

Fernandes, Eraldo R. and Ruy L. Milidiú.
2012. Entropy-guided feature generation
for structured learning of Portuguese
dependency parsing. In H. Caseli et al.,
editors, Proceedings of the Conference
on Computational Processing of the
Portuguese Language, volume 7243
of Lecture Notes in Computer Science.
Springer, Berlin/Heidelberg,
pages 146–156.

Fernandes, Eraldo R. and Ulf Brefeld.
2011. Learning from partially annotated
sequences. In Dimitrios Gunopulos,
Thomas Hofmann, Donato Malerba, and
Michalis Vazirgiannis, editors, Machine
Learning and Knowledge Discovery in
Databases, volume 6911 of Lecture
Notes in Computer Science. Springer,
Berlin/Heidelberg, pages 407–422.

Finkel, Jenny Rose and Christopher D.
Manning. 2008. Enforcing transitivity in
coreference resolution. In Proceedings of
the Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies: Short Papers, pages 45–48,
Columbus, OH.

Finley, Thomas and Thorsten Joachims.
2005. Supervised clustering with
support vector machines. In Proceedings
of the International Conference on Machine
Learning, pages 217–224, New York, NY.

Haghighi, Aria and Dan Klein. 2009. Simple
coreference resolution with rich syntactic
and semantic features. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 1,152–1,161,
Singapore.

Haghighi, Aria and Dan Klein. 2010.
Coreference resolution in a modular,
entity-centered model. In Proceedings
of the Conference of the North American

Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 385–393, Los Angeles, CA.

Klenner, Manfred. 2007. Enforcing
consistency on coreference sets.
In Proceedings of the International Conference
on Recent Advances in Natural Language
Processing, pages 323–328, Borovets.

Koo, Terry, Alexander M. Rush, Michael
Collins, Tommi Jaakkola, and David
Sontag. 2010. Dual decomposition
for parsing with non-projective
head automata. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 1,288–1,298,
Cambridge, MA.

Lee, Heeyoung, Angel Chang, Yves
Peirsman, Nathanael Chambers,
Mihai Surdeanu, and Dan Jurafsky. 2013.
Deterministic coreference resolution
based on entity-centric, precision-
ranked rules. Computational Linguistics,
39(4):885–916.

Lee, Heeyoung, Yves Peirsman, Angel
Chang, Nathanael Chambers, Mihai
Surdeanu, and Dan Jurafsky. 2011.
Stanford’s multi-pass sieve coreference
resolution system at the CoNLL-2011
shared task. In Proceedings of the
Fifteenth Conference on Computational
Natural Language Learning: Shared Task,
pages 28–34, Portland, OR.

Luo, Xiaoqiang. 2005. On coreference
resolution performance metrics.
In Proceedings of the Conference on Human
Language Technology and Empirical
Methods in Natural Language Processing,
pages 25–32, Vancouver.

Luo, Xiaoqiang, Abe Ittycheriah, Hongyan
Jing, Nanda Kambhatla, and Salim
Roukos. 2004. A mention-synchronous
coreference resolution algorithm based
on the bell tree. In Proceedings of the
42nd Annual Meeting of the Association
for Computational Linguistics, ACL’04,
pages 135–142, Stroudsburg, PA.

Martschat, Sebastian, Jie Cai, Samuel
Broscheit, Éva Mújdricza-Maydt, and
Michael Strube. 2012. A multigraph model
for coreference resolution. In Proceedings of
the Sixteenth Conference on Computational
Natural Language Learning: Shared Task,
pages 100–106, Jeju Island.

McCallum, Andrew. 2003. Efficiently
inducing features of conditional random
fields. In Proceedings of the Nineteenth
Conference on Uncertainty in Artificial
Intelligence, UAI’03, pages 403–410,
San Francisco, CA.

833

http://www.mitpressjournals.org/action/showLinks?crossref=10.6028%2Fjres.071B.032
http://www.mitpressjournals.org/action/showLinks?crossref=10.6028%2Fjres.071B.032
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2FCOLI_a_00152

Computational Linguistics Volume 40, Number 4

McCallum, Andrew and Ben Wellner. 2005.
Conditional models of identity uncertainty
with application to noun coreference.
In Lawrence K. Saul, Yair Weiss, and
Léon Bottou, editors, Proceedings of the
Advances in Neural Information Processing
Systems 17. MIT Press, Cambridge, MA,
pages 905–912.

McCarthy, Joseph F. and Wendy G. Lehnert.
1995. Using decision trees for coreference
resolution. In Proceedings of the Fourteenth
International Joint Conference on Artificial
Intelligence, pages 1,050–1,055, Montreal.

McDonald, Ryan, Koby Crammer, and
Fernando Pereira. 2005. Online
large-margin training of dependency
parsers. In Proceedings of the 43rd
Annual Meeting of the Association for
Computational Linguistics, pages 91–98,
Ann Arbor, MI.

McDonald, Ryan and Fernando Pereira.
2006. Online learning of approximate
dependency parsing algorithms. In
Proceedings of the 11st Conference of the
European Chapter of the Association for
Computational Linguistics, pages 81–88,
Trento.

Milidiú, Ruy Luiz, Cı́cero Nogueira dos
Santos, and Julio C. Duarte. 2008.
Phrase chunking using entropy guided
transformation learning. In Proceedings
of the 46th Annual Meeting of the Association
for Computational Linguistics: Human
Language Technologies, pages 647–655,
Columbus, OH.

Ng, Vincent. 2009. Graph-cut-based
anaphoricity determination for
coreference resolution. In Proceedings of
the Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 575–583,Boulder, CO.

Ng, Vincent. 2010. Supervised noun phrase
coreference research: The first fifteen years.
In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics,
pages 1,396–1,411, Uppsala.

Ng, Vincent and Claire Cardie. 2002.
Improving machine learning approaches
to coreference resolution. In Proceedings of
the 40th Annual Meeting of the Association for
Computational Linguistics, pages 104–111,
Philadelphia, PA.

Ponzetto, Simone Paolo and Michael Strube.
2006. Exploiting semantic role labeling,
WordNet and Wikipedia for coreference
resolution. In Proceedings of the Conference
of the North American Chapter of the
Association for Computational Linguistics:

Human Language Technologies,
pages 192–199, New York, NY.

Poon, Hoifung and Pedro Domingos. 2008.
Joint unsupervised coreference resolution
with Markov logic. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 650–659,
Honolulu, HI.

Pradhan, Sameer, Alessandro Moschitti,
Nianwen Xue, Olga Uryupina, and
Yuchen Zhang. 2012. CoNLL-2012
Shared Task: Modeling multilingual
unrestricted coreference in OntoNotes.
In Joint Conference on EMNLP and
CoNLL—Shared Task, CoNLL’12,
pages 1–40, Jeju Island.

Pradhan, Sameer, Lance Ramshaw, Mitchell
Marcus, Martha Palmer, Ralph Weischedel,
and Nianwen Xue. 2011. CoNLL-2011
Shared Task: Modeling unrestricted
coreference in OntoNotes. In Proceedings
of the Fifteenth Conference on Computational
Natural Language Learning: Shared Task,
pages 1–27, Portland.

Quinlan, J. Ross. 1992. C4.5: Programs for
Machine Learning (Morgan Kaufmann Series
in Machine Learning). Morgan Kaufmann,
1st edition.

Rahman, Altaf and Vincent Ng. 2009.
Supervised models for coreference
resolution. In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing, pages 968–977, Singapore.

Rosenblatt, Frank. 1957. The Perceptron—
A perceiving and recognizing automaton.
Technical report 85-460-1, Cornell
Aeronautical Laboratory.

Sapena, Emili, Lluı́s Padró, and Jordi
Turmo. 2010. Relaxcor: A global
relaxation labeling approach to
coreference resolution. In Proceedings of
the 5th International Workshop on Semantic
Evaluation, pages 88–91, Los Angeles, CA.

Sapena, Emili, Lluı́s Padró, and Jordi Turmo.
2011. Relaxcor participation in CoNLL
Shared Task on coreference resolution.
In Proceedings of the Fifteenth Conference on
Computational Natural Language Learning:
Shared Task, pages 35–39, Portland, OR.

Sapena, Emili, Lluı́s Padró, and Jordi Turmo.
2013. A constraint-based hypergraph
partitioning approach to coreference
resolution. Computational Linguistics,
39(4):847–884.

Soon, Wee Meng, Hwee Tou Ng, and
Daniel Chung Yong Lim. 2001. A machine
learning approach to coreference
resolution of noun phrases. Computational
Linguistics, 27:521–544.

834

http://www.mitpressjournals.org/action/showLinks?system=10.1162%2F089120101753342653
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2F089120101753342653
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2FCOLI_a_00151

Fernandes, dos Santos, and Milidiú Latent Trees for Coreference Resolution

Stoyanov, Veselin, Claire Cardie, Nathan
Gilbert, Ellen Riloff, David Buttler,
and David Hysom. 2010. Coreference
resolution with reconcile. In Proceedings
of the Annual Meeting of the Association for
Computational Linguistics: Short Papers,
pages 156–161, Uppsala.

Stoyanov, Veselin, Nathan Gilbert,
Claire Cardie, and Ellen Riloff. 2009.
Conundrums in noun phrase coreference
resolution: Making sense of the state-of-
the-art. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the Association
for Computational Linguistics and the
4th International Joint Conference on
Natural Language Processing of the Asian
Federation of Natural Language Processing,
pages 656–664, Suntec.

Su, Jiang and Harry Zhang. 2006. A
fast decision tree learning algorithm.
In Proceedings of the 21st National Conference
on Artificial intelligence, pages 500–505,
Boston, MA.

Sun, Xu, Takuya Matsuzaki, Daisuke
Okanohara, and Jun’ichi Tsujii. 2009.
Latent variable perceptron algorithm for
structured classification. In Proceedings of
the 21st International Joint Conference on
Artificial Intelligence, pages 1,236–1,242,
Pasadena, CA.

Sundheim, Beth and Ralph Grishman. 1995.
Appendix D: Coreference task definition
(v2.3). In Proceedings of the 6th Conference
on Message Understanding, pages 333–344,
Columbia, MD.

Tsochantaridis, I., Thorsten Joachims,
T. Hofmann, and Y. Altun. 2005. Large
margin methods for structured and
interdependent output variables. Journal
of Machine Learning Research, 6:1453–1484.

Uryupina, Olga, Alessandro Moschitti,
and Massimo Poesio. 2012. BART
goes multilingual: The UniTN/Essex
submission to the CoNLL-2012 Shared
Task. In Proceedings of the Sixteenth
Conference on Computational Natural
Language Learning: Shared Task,
pages 122–128, Jeju Island.

Uryupina, Olga, Sriparna Saha, Asif Ekbal,
and Massimo Poesio. 2011. Multi-metric
optimization for coreference: The
UniTN/IITP/Essex submission to the

2011 CoNLL Shared Task. In Proceedings
of the Fifteenth Conference on Computational
Natural Language Learning: Shared Task,
pages 61–65, Portland, OR.

Vilain, Marc, John Burger, John Aberdeen,
Dennis Connolly, and Lynette Hirschman.
1995. A model-theoretic coreference
scoring scheme. In Proceedings of the
6th Conference on Message Understanding,
pages 45–52, Columbia, MD.

Weischedel, Ralph, Eduard Hovy, Mitchell
Marcus, Martha Palmer, Robert Belvin,
Sameer Pradhan, Lance Ramshaw, and
Nianwen Xue. 2011. OntoNotes: A large
training corpus for enhanced processing.
In Joseph Olive, Caitlin Christianson,
and John McCary, editors, Handbook of
Natural Language Processing and Machine
Translation: DARPA Global Autonomous
Language Exploitation. Springer.

Yang, Xiaofeng, Jian Su, Jun Lang,
Chew Lim Tan, Ting Liu, and Sheng Li.
2008. An entity-mention model for
coreference resolution with inductive
logic programming. In Proceedings of
the Annual Meeting of the Association for
Computational Linguistics, pages 843–851,
Columbus, OH.

Yang, Xiaofeng, Jian Su, and Chew Lim Tan.
2008. A twin-candidate model for
learning-based anaphora resolution.
Computational Linguistics, 34(3):327–356.

Yang, Xiaofeng, Guodong Zhou, Jian Su,
and Chew Lim Tan. 2003. Coreference
resolution using competition learning
approach. In Proceedings of the 41st Annual
Meeting of the Association for Computational
Linguistics, pages 176–183, Sapporo.

Yu, Chun-Nam John and Thorsten Joachims.
2009. Learning structural SVMS with
latent variables. In Proceedings of the 26th
Annual International Conference on Machine
Learning, ICML’09, pages 1,169–1,176,
New York, NY.

Yuan, Bo, Qingcai Chen, Yang Xiang,
Xiaolong Wang, Liping Ge, Zengjian Liu,
Meng Liao, and Xianbo Si. 2012. A mixed
deterministic model for coreference
resolution. In Proceedings of the Sixteenth
Conference on Computational Natural
Language Learning: Shared Task,
pages 76–82, Jeju Island.

835

http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli.2008.07-004-R2-06-57

836

