@article{habernal-gurevych-2017-argumentation,
title = "Argumentation Mining in User-Generated Web Discourse",
author = "Habernal, Ivan and
Gurevych, Iryna",
journal = "Computational Linguistics",
volume = "43",
number = "1",
month = apr,
year = "2017",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/J17-1004",
doi = "10.1162/COLI_a_00276",
pages = "125--179",
abstract = "The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people{'}s argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="habernal-gurevych-2017-argumentation">
<titleInfo>
<title>Argumentation Mining in User-Generated Web Discourse</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Habernal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people’s argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.</abstract>
<identifier type="citekey">habernal-gurevych-2017-argumentation</identifier>
<identifier type="doi">10.1162/COLI_a_00276</identifier>
<location>
<url>https://aclanthology.org/J17-1004</url>
</location>
<part>
<date>2017-04</date>
<detail type="volume"><number>43</number></detail>
<detail type="issue"><number>1</number></detail>
<extent unit="page">
<start>125</start>
<end>179</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Argumentation Mining in User-Generated Web Discourse
%A Habernal, Ivan
%A Gurevych, Iryna
%J Computational Linguistics
%D 2017
%8 April
%V 43
%N 1
%I MIT Press
%C Cambridge, MA
%F habernal-gurevych-2017-argumentation
%X The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people’s argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.
%R 10.1162/COLI_a_00276
%U https://aclanthology.org/J17-1004
%U https://doi.org/10.1162/COLI_a_00276
%P 125-179
Markdown (Informal)
[Argumentation Mining in User-Generated Web Discourse](https://aclanthology.org/J17-1004) (Habernal & Gurevych, CL 2017)
ACL