@article{stab-gurevych-2017-parsing,
title = "Parsing Argumentation Structures in Persuasive Essays",
author = "Stab, Christian and
Gurevych, Iryna",
journal = "Computational Linguistics",
volume = "43",
number = "3",
month = sep,
year = "2017",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/J17-3005/",
doi = "10.1162/COLI_a_00295",
pages = "619--659",
abstract = "In this article, we present a novel approach for parsing argumentation structures. We identify argument components using sequence labeling at the token level and apply a new joint model for detecting argumentation structures. The proposed model globally optimizes argument component types and argumentative relations using Integer Linear Programming. We show that our model significantly outperforms challenging heuristic baselines on two different types of discourse. Moreover, we introduce a novel corpus of persuasive essays annotated with argumentation structures. We show that our annotation scheme and annotation guidelines successfully guide human annotators to substantial agreement."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stab-gurevych-2017-parsing">
<titleInfo>
<title>Parsing Argumentation Structures in Persuasive Essays</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Stab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>In this article, we present a novel approach for parsing argumentation structures. We identify argument components using sequence labeling at the token level and apply a new joint model for detecting argumentation structures. The proposed model globally optimizes argument component types and argumentative relations using Integer Linear Programming. We show that our model significantly outperforms challenging heuristic baselines on two different types of discourse. Moreover, we introduce a novel corpus of persuasive essays annotated with argumentation structures. We show that our annotation scheme and annotation guidelines successfully guide human annotators to substantial agreement.</abstract>
<identifier type="citekey">stab-gurevych-2017-parsing</identifier>
<identifier type="doi">10.1162/COLI_a_00295</identifier>
<location>
<url>https://aclanthology.org/J17-3005/</url>
</location>
<part>
<date>2017-09</date>
<detail type="volume"><number>43</number></detail>
<detail type="issue"><number>3</number></detail>
<extent unit="page">
<start>619</start>
<end>659</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Parsing Argumentation Structures in Persuasive Essays
%A Stab, Christian
%A Gurevych, Iryna
%J Computational Linguistics
%D 2017
%8 September
%V 43
%N 3
%I MIT Press
%C Cambridge, MA
%F stab-gurevych-2017-parsing
%X In this article, we present a novel approach for parsing argumentation structures. We identify argument components using sequence labeling at the token level and apply a new joint model for detecting argumentation structures. The proposed model globally optimizes argument component types and argumentative relations using Integer Linear Programming. We show that our model significantly outperforms challenging heuristic baselines on two different types of discourse. Moreover, we introduce a novel corpus of persuasive essays annotated with argumentation structures. We show that our annotation scheme and annotation guidelines successfully guide human annotators to substantial agreement.
%R 10.1162/COLI_a_00295
%U https://aclanthology.org/J17-3005/
%U https://doi.org/10.1162/COLI_a_00295
%P 619-659
Markdown (Informal)
[Parsing Argumentation Structures in Persuasive Essays](https://aclanthology.org/J17-3005/) (Stab & Gurevych, CL 2017)
ACL