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We present a detailed theoretical and computational analysis of the Watset meta-algorithm for
fuzzy graph clustering, which has been found to be widely applicable in a variety of domains.
This algorithm creates an intermediate representation of the input graph, which reflects the “am-
biguity” of its nodes. Then, it uses hard clustering to discover clusters in this “disambiguated”
intermediate graph. After outlining the approach and analyzing its computational complexity,
we demonstrate that Watset shows competitive results in three applications: unsupervised synset
induction from a synonymy graph, unsupervised semantic frame induction from dependency
triples, and unsupervised semantic class induction from a distributional thesaurus. Our algo-
rithm is generic and can also be applied to other networks of linguistic data.

1. Introduction

Language can be conceived as a system of interrelated symbols, such as words, senses,
part-of-speeches, letters, and so forth. Ambiguity is a fundamental inherent property
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of language. Namely, each symbol can refer to several meanings, mapping the space of
objects to the space of communicative signs (de Saussure 1916). For language processing
applications, these symbols need to be represented in a computational format. The struc-
ture discovery paradigm (Biemann 2012) aims at inducing a system of linguistic symbols
and relationships between them in an unsupervised way to enable processing of a wide
variety of languages. Clustering algorithms are central and ubiquitous tools for such
kinds of unsupervised structure discovery processes applied to natural language data.
In this article, we present a new clustering algorithm,1 which is especially suitable for
processing graphs of linguistic data, because it performs disambiguation of symbols in
the local context in order to subsequently globally cluster those disambiguated symbols.

At the heart of our method lies the pre-processing of a graph on the basis of local
pre-clustering. Breaking nodes that connect to several communities (i.e., hubs) into sev-
eral local senses helps to better reach the goal of clustering, no matter which clustering
algorithm is used. This results in a sparser sense-aware graphical representation of the
input data. Such a representation allows the use of efficient hard clustering algorithms
for performing fuzzy clustering.

The contributions presented in this article include:

1. A meta-algorithm for graph clustering, called WATSET, performing a
fuzzy clustering of the input graph using hard clustering methods in two
subsequent steps (Section 3).

2. A method for synset induction based on the WATSET algorithm applied to
synonymy graphs weighted by word embeddings (Section 4).

3. A method for semantic frame induction based on the WATSET algorithm
applied as a triclustering algorithm to syntactic triples (Section 5).

4. A method for semantic class induction based on the WATSET algorithm
applied to a distributional thesaurus (Section 6).

This article is organized as follows. Section 2 discusses the related work. Section 3
presents the WATSET algorithm in a more general fashion than previously introduced
in Ustalov, Panchenko, and Biemann (2017), including an analysis of its computational
complexity and run-time. We also describe a simplified version of WATSET that does
not use the context similarity measure for propagating links in the original graph to the
appropriate senses in the disambiguated graph. Three subsequent sections present dif-
ferent applications of the algorithm. Section 4 applies WATSET for unsupervised synset
induction, referencing results by Ustalov, Panchenko, and Biemann. Section 5 shows
frame induction with WATSET on the basis of a triclustering approach, as previously
described by Ustalov et al. (2018). Section 6 presents new experiments on semantic class
induction with WATSET. Section 7 concludes with the final remarks and pointers for
future work.

Table 1 shows several examples of linguistic structures on which we conduct ex-
periments described in this article. With the exception of the type of input graph and
the hyper-parameters of the WATSET algorithm, the overall pipeline remains similar
in every described application. For instance, in Section 4 the input of the clustering
algorithm is a graph of ambiguous synonyms and the output is an induced linguistic

1 This article builds upon and expands on Ustalov, Panchenko, and Biemann (2017) and Ustalov et al.
(2018).
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Table 1
Various types of input linguistic graphs clustered by the WATSET algorithm and the
corresponding induced output symbolic linguistic structures.

Input Nodes Input Edges Output Linguistic Structure See

Polysemous words Synonymy
relationships

Synsets composed of
disambiguated words

§ 4

Subject-Verb-Object
(SVO) triples

Most distributionally
similar SVO triples

Lexical semantic frames § 5

Polysemous words Most distributionally
similar words

Semantic classes composed
of disambiguated words

§ 6

structure that represents synsets. Thus, by varying the input graphs we show how
using the same methodology on various types of linguistic structures can be induced
in an unsupervised manner. This opens avenues for extraction of various meaningful
structures from linguistic graphs in natural language processing (NLP) and other fields
using the method presented in this article.

2. Related Work

We present surveys on graph clustering (Section 2.1), word sense induction (Section 2.2),
lexical semantic frame induction (Section 2.3), and semantic class induction (Section 2.4),
giving detailed explanations of algorithms used in our experiments and discussing
related work on these topics.

2.1 Graph Clustering

Graph clustering is a process of finding groups of strongly related vertices in a graph,
which is a field of research in its own right with a large number of proposed approaches;
see Schaeffer (2007) for a survey. Graph clustering methods are strongly related to the
methods for finding communities in networks (Newman and Girvan 2004; Fortunato
2010). In our work, we focus mostly on the algorithms, which have proven to be useful
for processing of networks of linguistic data, such as word co-occurrence graphs, espe-
cially those that were used for induction of linguistic structures such as word senses.

Markov Clustering (MCL; van Dongen 2000) is a hard clustering algorithm, that is,
a method that partitions nodes of the graph in a set of disjoint clusters. This method is
based on simulation of stochastic flow in graphs. MCL simulates random walks within
a graph by the alternation of two operators, called expansion and inflation, which
recompute the class labels. Notably, it has been successfully used for the word sense
induction task (Dorow and Widdows 2003).

Chinese Whispers (CW; Biemann 2006, 2012) is a hard clustering algorithm for
weighted graphs, which can be considered as a special case of MCL with a simplified
class update step. At each iteration, the labels of all the nodes are updated according
to the majority of labels among the neighboring nodes. The algorithm has a hyper-
parameter that controls graph weights, which can be set to three values: (1) CWtop sums
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over the neighborhood’s classes; (2) CWlin downgrades the influence of a neighboring
node by its degree; or (3) CWlog by the logarithm of its degree.

MaxMax (Hope and Keller 2013a) is a fuzzy clustering algorithm particularly de-
signed for the word sense induction task. In a nutshell, pairs of nodes are grouped if
they have a maximal mutual affinity. The algorithm starts by converting the undirected
input graph into a directed graph by keeping the maximal affinity nodes of each node.
Next, all nodes are marked as root nodes. Finally, for each root node, the following
procedure is repeated: All transitive children of this root form a cluster and the roots
are marked as non-root nodes; a root node together with all its transitive children form
a fuzzy cluster.

Clique Percolation Method (CPM) by Palla et al. (2005) is a fuzzy clustering al-
gorithm, that is, a method that partitions nodes of a graph in a set of potentially
overlapping clusters. The method is designed for unweighted graphs and builds up
clusters from k-cliques corresponding to fully connected sub-graphs of k nodes. Al-
though this method is only commonly used in social network analysis for clique de-
tection, we decided to add it to the comparison, as synsets are essentially cliques of
synonyms.

The Louvain method (Blondel et al. 2008) is a hard graph clustering method
developed for identification of communities in large networks. The algorithm finds
hierarchies of clusters in a recursive fashion. It is based on a greedy method that
optimizes modularity of a partition of the network. First, it looks for small communities
by optimizing modularity locally. Second, it aggregates nodes belonging to the same
community and builds a new network whose nodes are the communities. These steps
are repeated to maximize modularity of the clustering result.

2.2 Word Sense Induction

Word Sense Induction is an unsupervised knowledge-free approach to Word Sense Dis-
ambiguation (WSD): It uses neither handcrafted lexical resources nor hand-annotated
sense-labeled corpora. Instead, it induces word sense inventories automatically from
corpora. Unsupervised WSD methods fall into two main categories: context clustering
and word ego network clustering.

Context clustering approaches, such as Pedersen and Bruce (1997) and Schütze
(1998), represent an instance usually by a vector that characterizes its context, where the
definition of context can vary greatly. These vectors of each instance are then clustered.

Schütze (1998) induced sparse sense vectors by clustering context vectors, using
the expectation-maximization algorithm. This approach is fitted with a similarity-based
WSD mechanism. Pantel and Lin (2002) used a two-staged Clustering by Committee
algorithm. In the first stage, it uses average-link clustering to find small and tight
clusters, which are used to iteratively identify committees from these clusters. Reisinger
and Mooney (2010) presented a multi-prototype vector space. Sparse tf–idf vectors are
clustered, using a parametric method fixing the same number of senses for all words.
Sense vectors are centroids of the clusters.

Whereas most dense word vector models represent a word with a single vector
and thus conflate senses (Mikolov et al. 2013; Pennington, Socher, and Manning 2014),
there are several approaches that produce word sense embeddings. Multi-prototype
extensions of the Skip-Gram model (Mikolov et al. 2013) that use no predefined sense
inventory learn one embedding word vector per one word sense and are commonly
fitted with a disambiguation mechanism (Huang et al. 2012; Apidianaki and Sagot 2014;
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Neelakantan et al. 2014; Tian et al. 2014; Li and Jurafsky 2015; Bartunov et al. 2016; Cocos
and Callison-Burch 2016; Pelevina et al. 2016; Thomason and Mooney 2017).

Huang et al. (2012) introduced multiple word prototypes for dense vector represen-
tations (embeddings). Their approach is based on a neural network architecture; during
training, all contexts of the word are clustered.

Apidianaki and Sagot (2014) use an aligned parallel corpus and WordNet for En-
glish to perform cross-lingual word sense disambiguation to produce French synsets.
However, Cocos and Callison-Burch (2016) showed that it is possible to successfully
perform a monolingual word sense induction using only such a paraphrase corpus as
Paraphrase Database (Pavlick et al. 2015).

Tian et al. (2014) introduced a probabilistic extension of the Skip-Gram model
(Mikolov et al. 2013) that learns multiple sense-aware prototypes weighted by their
prior probability. These models use parametric clustering algorithms that produce a
fixed number of senses per word.

Neelakantan et al. (2014) proposed a multi-sense extension of the Skip-Gram model,
which was the first one to learn the number of senses by itself. During training, a new
sense vector is allocated if the current context’s similarity to existing senses is below
some threshold. All previously mentioned sense embeddings were evaluated on the
contextual word similarity task, each one improving upon previous models.

Nieto Piña and Johansson (2015) presented another multi-prototype modification
of the Skip-Gram model. Their approach outperforms that of Neelakantan et al. (2014),
but requires the number of senses for each word to be set manually.

Bartunov et al. (2016) introduced AdaGram, a non-parametric method for learning
sense embeddings based on a Bayesian extension of the Skip-Gram model. The granu-
larity of learned sense embeddings is controlled by the α parameter.

Li and Jurafsky (2015) proposed an approach for learning sense embeddings based
on the Chinese Restaurant Process. A new sense is allocated if a new word context is
significantly different from existing senses. The approach was tested on multiple NLP
tasks, showing that sense embeddings can significantly improve the performance of
part-of-speech tagging, semantic relationship identification, and semantic relatedness
tasks, but yield no improvement for named entity recognition and sentiment analysis.

Thomason and Mooney (2017) performed multi-modal word sense induction by
combining both language and vision signals. In this approach, word embeddings are
learned from the ImageNet corpus (Deng et al. 2009) and visual features are obtained
from a deep neural network. Running a k-means algorithm on the joint feature set
produces WordNet-like synsets.

Word ego network clustering methods cluster graphs of words semantically re-
lated to the ambiguous word (Lin 1998; Pantel and Lin 2002; Widdows and Dorow 2002;
Biemann 2006; Hope and Keller 2013a). An ego network consists of a single node (ego),
together with the nodes they are connected to (alters), and all the edges among those
alters (Everett and Borgatti 2005). In our case, such a network is a local neighborhood
of one word. Nodes of the ego network can be (1) words semantically similar to the
target word, as in our approach, or (2) context words relevant to the target, as in the UoS
system (Hope and Keller 2013b). Graph edges represent semantic relationships between
words derived using corpus-based methods (e.g., distributional semantics) or gath-
ered from dictionaries. The sense induction process using word graphs is explored by
Widdows and Dorow (2002), Biemann (2006), and Hope and Keller (2013a). Disam-
biguation of instances is performed by assigning the sense with the highest overlap
between the instance’s context words and the words of the sense cluster. Véronis
(2004) compiles a corpus with contexts of polysemous nouns using a search engine.
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A word graph is built by drawing edges between co-occurring words in the gathered
corpus, where edges below a certain similarity threshold were discarded. His HyperLex
algorithm detects hubs of this graph, which are interpreted as word senses. Disambigua-
tion in this experiment is performed by computing the distance between context words
and hubs in this graph.

Di Marco and Navigli (2013) present a comprehensive study of several graph-based
WSI methods, including CW, HyperLex, and curvature clustering (Dorow et al. 2005).
Additionally, the authors propose two novel algorithms: Balanced Maximum Spanning
Tree Clustering and Squares (B-MST), and Triangles and Diamonds (SquaT++). To
construct graphs, authors use first-order and second-order relationships extracted from
a background corpus as well as keywords from snippets. This research goes beyond
intrinsic evaluations of induced senses and measures the impact of the WSI in the
context of an information retrieval via clustering and diversifying Web search results.
Depending on the data set, HyperLex, B-MST, or CW provided the best results. For a
comparative study of graph clustering algorithms for word sense induction in a pseudo-
word evaluation confirming the effectiveness of CW, see Cecchini et al. (2018).

Methods based on clustering of synonyms, such as our approach and Max-
Max (Hope and Keller 2013a), induce the resource from an ambiguous graph of syn-
onyms where edges are extracted from manually created resources. To the best of our
knowledge, most experiments either used graph-based word sense induction applied
to text-derived graphs or relied on a linking-based method that already assumes the
availability of a WordNet-like resource. A notable exception is the ECO (Extraction,
Clustering, Ontologization) approach by Gonçalo Oliveira and Gomes (2014), which
was applied to induce a WordNet of the Portuguese language called Onto.PT.2 ECO is
a fuzzy clustering algorithm that was used to induce synsets for a Portuguese WordNet
from several available synonymy dictionaries. The algorithm starts by adding random
noise to edge weights. Then, the approach applies Markov Clustering (Section 2.1) of
this graph several times to estimate the probability of each word pair being in the same
synset. Finally, candidate pairs over a certain threshold are added to output synsets.
We compare this approach to five other state-of-the-art graph clustering algorithms
described in Section 2.1 as the baselines.

2.3 Semantic Frame Induction

Frame Semantics was originally introduced by Fillmore (1982) and further developed in
the FrameNet project (Baker, Fillmore, and Lowe 1998). FrameNet is a lexical resource
composed of a collection of semantic frames, relationships between them, and a corpus
of frame occurrences in text. This annotated corpus gave rise to the development of
frame parsers using supervised learning (Gildea and Jurafsky 2002; Erk and Padó 2006;
Das et al. 2014, inter alia), as well as its application to a wide range of tasks, ranging
from answer extraction in Question Answering (Shen and Lapata 2007) and Textual
Entailment (Burchardt et al. 2009; Ben Aharon, Szpektor, and Dagan 2010).

However, frame-semantic resources are arguably expensive and time-consuming
to build because of difficulties in defining the frames, their granularity and domain,
as well as the complexity of the construction and annotation tasks. Consequently, such
resources exist only for a few languages (Boas 2009) and even English is lacking domain-
specific frame-based resources. Possible inroads are cross-lingual semantic annotation

2 http://ontopt.dei.uc.pt.
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transfer (Padó and Lapata 2009; Hartmann, Eckle-Kohler, and Gurevych 2016) or linking
FrameNet to other lexical-semantic or ontological resources (Narayanan et al. 2003;
Tonelli and Pighin 2009; Laparra and Rigau 2010; Gurevych et al. 2012, inter alia). One
inroad for overcoming these issues is automatizing the process of FrameNet construc-
tion through unsupervised frame induction techniques, as investigated by the systems
described next.

LDA-Frames (Materna 2012, 2013) is an approach to inducing semantic frames
using a latent Dirichlet allocation (LDA) by Blei, Ng, and Jordan (2003) for generating
semantic frames and their respective frame-specific semantic roles at the same time.
The authors evaluated their approach against the CPA corpus (Hanks and Pustejovsky
2005). Although Ritter, Mausam, and Etzioni (2010) have applied LDA for inducing
structures similar to frames, their study is focused on the extraction of mutually related
frame arguments.

ProFinder (Cheung, Poon, and Vanderwende 2013) is another generative approach
that also models both frames and roles as latent topics. The evaluation was performed
on the in-domain information extraction task MUC-4 (Sundheim 1992) and on the text
summarization task TAC-2010.3

Modi, Titov, and Klementiev (2012) build on top of an unsupervised semantic
role labeling model (Titov and Klementiev 2012). The raw text of sentences from the
FrameNet data is used for training. The FrameNet gold annotations are then used to
evaluate the labeling of the obtained frames and roles, effectively clustering instances
known during induction.

Kawahara, Peterson, and Palmer (2014) harvest a huge collection of verbal pred-
icates along with their argument instances and then apply the Chinese Restaurant
Process clustering algorithm to group predicates with similar arguments. The approach
was evaluated on the verb cluster data set of Korhonen, Krymolowski, and Marx (2003).

These and some other related approaches (e.g., the one by O’Connor 2013), were
all evaluated in completely different incomparable settings, and used different input
corpora, making it difficult to judge their relative performance.

2.4 Semantic Class Induction

The problem of inducing semantic classes from text, also known as semantic lexicon in-
duction, has also been extensively explored in previous works. This is because inducing
semantic classes directly from text has the potential to avoid the limited coverage prob-
lems of knowledge bases like Freebase, DBpedia (Bizer et al. 2009), or BabelNet (Navigli
and Ponzetto 2012), which rely on Wikipedia (Hovy, Navigli, and Ponzetto 2013), as
well as to allow for resource induction across domains (Hovy et al. 2011). Information
about semantic classes, in turn, has been shown to benefit such high-level NLP tasks as
coreference (Ng 2007).

Induction of semantic classes as a research direction in the field of NLP starts, to
the best of our knowledge, with Lin and Pantel (2001), where sets of similar words are
clustered into concepts. This approach performs a hard clustering and does not label
clusters, but these drawbacks are addressed by Pantel and Lin (2002), where words can
belong to several clusters, thus representing senses.

Pantel and Ravichandran (2004) aggregate hypernyms per cluster, which come
from Hearst (1992) patterns. Pattern-based approaches were further developed using

3 https://tac.nist.gov/2010/Summarization.
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graph-based methods using a PageRank-based weighting (Kozareva, Riloff, and Hovy
2008), random walks (Talukdar et al. 2008), or heuristic scoring (Qadir et al. 2015).
Other approaches use probabilistic graphical models, such as the ones proposed by
Ritter, Mausam, and Etzioni (2010) and Hovy et al. (2011). To ensure the overall quality
of extraction pattern with minimal supervision, Thelen and Riloff (2002) explored a
bootstrapping approach, later extended by McIntosh and Curran (2009) with bagging
and distributional similarity to minimize the semantic drift problem of iterative boot-
strapping algorithms.

As an alternative to pattern-based methods, Panchenko et al. (2018b) show how
to apply semantic classes to improve hypernymy extraction and taxonomy induction.
Like in our experiments in Section 6, it uses a distributional thesaurus as input, as well
as multiple pre- and post-processing stages to filter the input graph and disambiguate
individual nodes. In contrast to Pachenko et al., here we directly apply the WATSET al-
gorithm to obtain the resulting distributional semantic classes instead of using a sophis-
ticated parametric pipeline that performs a sequence of clustering and pruning steps.

Another related strain of research to semantic class induction is dedicated to the
automatic set expansion task (Sarmento et al. 2007; Wang and Cohen 2008; Pantel et al.
2009; Rong et al. 2016; Shen et al. 2017). In this task, a set of input lexical entries, such
as words or entities, is provided (e.g., “apple, mango, pear, banana”). The system is
expected to extend this initial set with relevant entries (such as other fruits in this case,
e.g., “peach” and “lemon”). Besides the academic publications listed above, Google Sets
was an industrial system for providing similar functionality.4

3. WATSET, an Algorithm for Fuzzy Graph Clustering

In this section, we present WATSET, a meta-algorithm for fuzzy graph clustering. Given
a graph connecting potentially ambiguous objects (e.g., words), WATSET induces a set
of unambiguous overlapping clusters (communities) by disambiguating and grouping
the ambiguous objects. WATSET is a meta-algorithm that uses existing hard clustering
algorithms for graphs to obtain a fuzzy clustering (e.g., soft clustering).

In computational linguistics, graph clustering is used for addressing problems such
as word sense induction (Biemann 2006), lexical chain computing (Medelyan 2007), Web
search results diversification (Di Marco and Navigli 2013), sentiment analysis (Pang
and Lee 2004), and cross-lingual semantic relationship induction (Lewis and Steedman
2013b); more applications can be found in the book by Mihalcea and Radev (2011).

Definitions. Let G = (V, E) be an undirected simple graph,5 where V is a set of nodes
and E ⊆ V2 is a set of undirected edges. We denote a subset of nodes Ci ⊆ V as a
cluster. A graph clustering algorithm then is a function CLUSTER : (V, E)→ C such that
V =

⋃
Ci∈C Ci. We distinguish two classes of graph clustering algorithms: hard clustering

algorithms (partitionings) produce non-overlapping clusters, that is, Ci ∩ Cj = ∅ ⇐⇒
i 6= j, ∀Ci, Cj ∈ C, whereas fuzzy clustering algorithms permit cluster overlapping, that
is, a node can be a member of several clusters in C.

4 http://web.archive.org/web/20110327090414/http://labs.google.com/sets.
5 A simple graph has no loops, i.e., u 6= v, ∀{u, v} ∈ E. We use this property for context disambiguation in

Section 3.2.2.
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Figure 1
The outline of the WATSET algorithm showing the local step of word sense induction and context
disambiguation, and the global step of sense graph constructing and clustering.

3.1 Outline of WATSET, a Fuzzy Method for Local-Global Graph Clustering

WATSET constructs an intermediate representation of the input graph called a sense
graph, which has been sketched as a “disambiguated word graph” in Biemann (2012).
This is achieved by node sense induction based on hard clustering of the input graph
node neighborhoods. The sense graph has the edges established between the different
senses of the input graph nodes. The global clusters of the input graph are obtained by
applying a hard clustering algorithm to the sense graph; removal of the sense labels
yields overlapping clusters.

An outline of our algorithm is depicted in Figure 1. WATSET takes an undirected
graph G = (V, E) as the input and outputs a set of clusters C. The algorithm has two
steps: local and global. The local step, as described in Section 3.2, disambiguates the
potentially ambiguous nodes in G. The global step, as described in Section 3.3, uses these
disambiguated nodes to construct an intermediate sense graph G = (V , E ) and produce
the overlapping clustering C. WATSET is parameterized by two graph partitioning algo-
rithms ClusterLocal and ClusterGlobal, and a context similarity measure sim. The complete
pseudocode of WATSET is presented in Algorithm 1. For the sake of illustration, while
describing the approach, we will provide examples with words and their synonyms.
However, WATSET is not bound only to the lexical units and relationships, so our
examples are given without loss of generality. Note also that WATSET can be applied
for both unweighted and weighted graphs as soon as the underlying hard clustering
algorithms ClusterLocal and ClusterGlobal take edge weights into account.

3.2 Local Step: Node Sense Induction and Disambiguation

The local step of WATSET discovers the node senses in the input graph and uses this
information to discover which particular senses of the nodes were connected via the
edges of the input graph G.

3.2.1 Node Sense Induction. We induce node senses using the word neighborhood clus-
tering approach by Dorow and Widdows (2003). In particular, we assume that the
removal of the nodes participating in many triangles separates a graph into several
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Algorithm 1 WATSET, a Local-Global Meta-Algorithm for Fuzzy Graph Clustering.
Input: graph G = (V, E),

hard clustering algorithms ClusterLocal and ClusterGlobal,
context similarity measure sim : (ctx(a), ctx(b))→ R, ∀ ctx(a), ctx(b) ⊆ V.

Output: clusters C.
1: for all u ∈ V do . Local Step: Sense Induction
2: senses(u)← ∅
3: Vu ← {v ∈ V : {u, v} ∈ E} . Note that u /∈ Vu
4: Eu ← {{v, w} ∈ E : v, w ∈ Vu}
5: Gu ← (Vu, Eu)
6: Cu ← ClusterLocal(Gu) . Cluster the open neighborhood of u
7: for all Ci

u ∈ Cu do
8: ctx(ui)← Ci

u
9: senses(u)← senses(u) ∪ {ui}

10: V ←
⋃

u∈V senses(u) . Global Step: Sense Graph Nodes
11: for all û ∈ V do . Local Step: Context Disambiguation
12: ĉtx(û)← ∅
13: for all v ∈ ctx(û) do
14: v̂← arg maxv′∈senses(v)sim(ctx(û) ∪ {u}, ctx(v′)) . û is a sense of u ∈ V
15: ĉtx(û)← ĉtx(û) ∪ {v̂}
16: E ← {{û, v̂} ∈ V2 : v̂ ∈ ĉtx(û)} . Global Step: Sense Graph Edges
17: G ← (V , E ) . Global Step: Sense Graph Construction
18: C ← ClusterGlobal(G) . Global Step: Sense Graph Clustering
19: C← {{u ∈ V : û ∈ Ci} ⊆ V : Ci ∈ C} . Remove the sense labels
20: return C

connected components. Each component corresponds to the sense of the target node,
so this procedure is executed for every node independently. Figure 2 illustrates this
approach for sense induction. For related work on word sense induction approaches,
see the survey in Section 2.2.

streambank?

streamside?

riverbank?

building?

bank building?

bank?

Figure 2
Clustering the neighborhood of the node “bank” of the input graph results in two clusters
treated as the non-disambiguated sense contexts: bank1 = {streambank, riverbank, . . . } and
{bank2 = bank building, building, . . . }.
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Table 2
Example of induced senses for the node “bank” and the corresponding clusters (contexts).

Sense Context

bank1 {streambank, riverbank, . . . }
bank2 {bank building, building, . . . }
bank3 {bank company, . . . }
bank4 {coin bank, penny bank, . . . }

Given a node u ∈ V, we extract its open neighborhood Gu = (Vu, Eu) from the input
graph G, such that the target node u is not included into Vu (lines 3–5):

Vu = {v ∈ V : {u, v} ∈ E} (1)

Eu = {{v, w} ∈ E : v, w ∈ Vu} (2)

Then, we run a hard graph clustering algorithm on Gu that assigns one node to one
and only one cluster, yielding a clustering Cu (line 6). We treat each obtained cluster
Ci

u ∈ Cu ⊂ Vu as representing a context for a different sense of the node u ∈ V (lines 7–
9). We denote, for example, bank1, bank2, and other labels as the node senses referred
to as senses(bank). In the example in Table 2, |senses(bank)| = 4. Given a sense ui ∈
senses(u), we denote ctx(ui) = Ci

u as a context of this sense of the node u ∈ V. Execution
of this procedure for all the words in V results in the set of senses for the global step
(line 10):

V =
⋃

u∈V

senses(u) (3)

3.2.2 Disambiguation of Neighbors. Although at the previous step we have induced node
senses and mapped them to the corresponding contexts (Table 2), the elements of these
contexts do not contain sense information. For example, the context of bank2 in Figure 3
has two elements {bank building?, building?}, the sense labels of which are currently not
known. We recover the sense labels of nodes in a context using the sense disambiguated
approach proposed by Faralli et al. (2016) as follows.

We represent each context as a vector in a vector space model (Salton, Wong, and
Yang 1975) constructed for all the contexts. Because the graph G is simple (Section 3)
and the context of any sense û ∈ V does not include the corresponding node u ∈ V
(Table 2), we temporarily put it into context during disambiguation. This prevents the
situation of non-matching when the context of a candidate sense v′ ∈ senses(v) has only
one element and that element is u, that is, ctx(v′) = {u}. We intentionally perform this
insertion temporarily only during matching to prevent self-referencing. When a context
ctx(û) ⊂ V is transformed into a vector, we assign to each element v ∈ ctx(û) of this
vector a weight equal to the weight of the edge {u, v} ∈ E of the input graph G. If G is
unweighted, we assign 1 if and only if {u, v} ∈ E, otherwise 0 is assigned. Table 3 shows
an example of the context vectors used for disambiguating the word building in the
context of the sense bank2 in Figure 3. In this example the vectors essentially represent
one-hot encoding as the example input graph is unweighted.
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streambank?

streamside?

riverbank?

building?

bank building?

bank1 bank2

Figure 3
Contexts for two different senses of the node “bank”: only its senses bank1 and bank2 are
currently known, whereas the other nodes in contexts need to be disambiguated.

Table 3
An example of context vectors for the node senses demonstrated in Figures 3 and 4. Because the
graph is unweighted, one-hot encoding has been used. For matching purposes, the word “bank”
is temporarily added into ctx(bank2).

Sense bank bank building building construction edifice

bank2 1 1 1 0 0
building1 1 1 0 1 0
building2 0 0 0 0 1

Then, given a sense û ∈ V of a node u ∈ V and the context of this sense ctx(û) ⊂ V,
we disambiguate each node v ∈ ctx(û). For that, we find the sense v̂ ∈ senses(v) the
context ctx(v̂) ⊂ V, which maximizes the similarity to the target context ctx(û). We
compute the similarity using a context similarity measure sim : (ctx(a), ctx(b))→ R,
∀ctx(a), ctx(b) ⊆ V.6 Typical choices for the similarity measure are dot product, cosine
similarity, Jaccard index, etc. Hence, we disambiguate each context element v ∈ ctx(û):

v̂ = arg maxv′∈senses(v)sim(ctx(û) ∪ {u}, ctx(v′)) (4)

An example in Figure 4 illustrates the node sense disambiguation process. The
context of the sense bank2 is ctx(bank2) = {building, bank building} and the disam-
biguation target is building. Having chosen cosine similarity as the context similarity
measure, we compute the similarity between ctx(bank2 ∪ {bank}) and the context
of every sense of building in Table 3: cos(ctx(bank2) ∪ {bank}, ctx(building1)) = 2

3 and
cos(ctx(bank2) ∪ {bank}, ctx(building2)) = 0. Therefore, for the word building in the

6 For the sake of brevity, by context similarity we mean similarity between context vectors in a sparse vector space
model (Salton, Wong, and Yang 1975).
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Figure 4
Matching the meaning of the ambiguous node “building” in the context of the sense bank2. For
matching purposes, the word “bank” is temporarily added into ctx(bank2).

context of bank2, its first sense, building1, should be used because its similarity value
is higher.

Finally, we construct a disambiguated context ĉtx(û) ⊂ V that is a sense-aware
representation of ctx(û). This disambiguated context indicates which node senses were
connected to û ∈ V in the input graph G. For that, in lines 13–15, we apply the disam-
biguation procedure defined in Equation (4) for every node v ∈ ctx(û):

ĉtx(û) = {v̂ ∈ V : v ∈ ctx(û)} (5)

As the result of the local step, for each node u ∈ V in the input graph, we induce
the senses(u) ⊂ V of nodes and provide each sense û ∈ V with a disambiguated context
ĉtx(û) ⊆ V .

3.3 Global Step: Sense Graph Construction and Clustering

The global step of WATSET constructs an intermediate sense graph expressing the connec-
tions between the node senses discovered at the local step. We assume that the nodes V
of the sense graph are non-ambiguous, so running a hard clustering algorithm on this
graph outputs clusters C covering the set of nodes V of the input graph G.

3.3.1 Sense Graph Construction. Using the set of node senses defined in Equation (3),
we construct the sense graph G = (V , E ) by establishing undirected edges between the
senses connected through the disambiguated contexts (lines 16–17):

E = {{û, v̂} ∈ V2 : v̂ ∈ ĉtx(û)} (6)

Note that this edge construction approach disambiguates the edges E such that if a
pair of nodes was connected in the input graph G, then the corresponding sense nodes
will be connected in the sense graph G. As a result, the constructed sense graph G is a
sense-aware representation of the input graph G. In the event G is weighted, we assign
each edge {û, v̂} ∈ E the same weight as the edge {u, v} ∈ E has in the input graph.
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streambank3

streamside1

riverbank2

building2

bank building1

bank1 bank2

Figure 5
Clustering of the sense graph G yields two clusters, {bank1, streambank3, riverbank2, . . . } and
{bank2, bankbuilding1, building2, . . . }; if one removes the sense labels, the clusters will overlap,
resulting in a soft clustering of the input graph G.

3.3.2 Sense Graph Clustering. Running a hard clustering algorithm on G produces the set
of sense-aware clusters C; each sense-aware cluster Ci ∈ C is a subset of V (line 18). In
order to obtain the set of clusters C that covers the set of nodes V of the input graph G,
we simply remove the sense labels from the elements of clusters C (line 19):

C = {{u ∈ V : û ∈ Ci} ⊆ V : Ci ∈ C} (7)

Figure 5 illustrates the sense graph and its clustering in the example of the node
“bank.” The construction of a sense graph requires disambiguation of the input graph
nodes. Note that traditional approaches to graph-based sense induction, such as the
ones proposed by Véronis (2004), Biemann (2006), and Hope and Keller (2013a), do not
perform this step, but perform only local clustering of the graph because they do not
aim at a global representation of clusters.

As the result of the global step, a set of clusters C of the input graph G is obtained,
using an intermediate sense-aware graph G. The presented local-global graph clustering
approach, WATSET, makes it possible to naturally achieve a soft clustering of a graph
using hard clustering algorithms only.

3.4 Simplified WATSET

The original WATSET algorithm, as previously published (Ustalov, Panchenko, and
Biemann 2017) and described in Section 3.1, has context construction and disambigua-
tion steps. These steps involve computation of a context similarity measure, which
needs to be chosen as a hyper-parameter of the algorithm (Section 3.2.2). In this section,
we propose a simplified version of WATSET (Algorithm 2) that requires no context
similarity measure, which leads to faster computation in practice with less hyper-
parameter tuning. As our experiments throughout this article show, this simplified
version demonstrates similar performance to the original WATSET algorithm.

In the input graph G a pair of nodes {u, v} ∈ V2 can be incident to one and only one
edge. Otherwise, these nodes are not connected. Because of the use of a hard clustering
algorithm for node sense induction (Section 2.2), in any pair of nodes {u, v} ∈ E, the
node v can appear in the context of only one sense of u and vice versa. Therefore, we
can omit the context disambiguation step (Section 3.2.2) by tracking the node sense
identifiers produced during sense induction.
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Algorithm 2 Simplified WATSET.
Input: graph G = (V, E), hard clustering algorithms ClusterLocal and ClusterGlobal.
Output: clusters C.

1: V ← ∅
2: for all u ∈ V do . Local Step: Sense Induction
3: Vu ← {v ∈ V : {u, v} ∈ E} . Note that u /∈ Vu
4: Eu ← {{v, w} ∈ E : v, w ∈ Vu}
5: Gu ← (Vu, Eu)
6: Cu ← ClusterLocal(Gu) . Cluster the open neighborhood of u
7: for all Ci

u ∈ Cu do
8: for all v ∈ Ci

u do
9: senses[u][v]← i . Node v is connected to the i-th sense of u

10: V ← V ∪ {ui}
11: E ← {{usenses[u][v], vsenses[v][u]} ∈ V2 : {u, v} ∈ E} . Global Step: Sense Graph Edges
12: G ← (V , E ) . Global Step: Sense Graph Construction
13: C ← ClusterGlobal(G) . Global Step: Sense Graph Clustering
14: C← {{u ∈ V : û ∈ Ci} ⊆ V : Ci ∈ C} . Remove the sense labels
15: return C

Given a pair {u, v} ∈ E, we reuse the sense information from Table 2 to determine
which context of a sense û ∈ V contains v. We denote this as senses[u][v] ∈ N, which
indicates v ∈ ctx(usenses[u][v]), that is, the fact that node v is connected to the node u in
the specified sense usenses[u][v]. Following the example in Figure 2, if the context of bank1

contains the word streambank, then the context of one of the senses of streambank must
contain the word bank (e.g., streambank3). This information allows us to create Table 4,
which allows producing the set of sense-aware edges by simultaneously retrieving the
corresponding sense identifiers:

E =
{
{usenses[u][v], vsenses[v][u]} ∈ V2 : {u, v} ∈ E

}
(8)

This allows us to construct the sense graph G in linear time O(|E|) by querying
the node sense index to disambiguate the input edges E in a deterministic way. Other
steps are identical to the original WATSET algorithm (Section 3.1). Simplified WATSET is
presented in Algorithm 2.

3.5 Algorithmic Complexity

We analyze the computational complexity of the separate routines of WATSET and
then present the overall complexity compared with other hard and soft clustering
algorithms. Our analysis is based on the assumption that the context similarity mea-
sure in Equation (4) can be computed in linear time with respect to the number of
dimensions d ∈ N. For instance, such measures as cosine and Jaccard satisfy this re-
quirement. In all our experiments throughout this article, we use the cosine similarity
measure: sim(ctx(a), ctx(b)) = cos(ctx(a), ctx(b)), ∀ctx(a), ctx(b) ⊆ V. Provided that the
context vectors are normalized, the complexity of such a measure is bound by the
complexity of an inner product of two vectors, which is O(|ctx(a) ∪ ctx(b)|).
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Table 4
Node sense identifier tracking in Simplified WATSET, according to Figure 2.

Source Target Index

bank streambank 1
riverbank 1
streamside 1

building 2
bank building 2

streambank bank 3
riverbank 3

. . .

Because the running time of our algorithm depends on the task-specific choice
of two hard clustering algorithms, ClusterLocal and ClusterGlobal, we report algorithm-
specific analysis on two hard clustering algorithms that are popular in computational
linguistics: CW by Biemann (2006) and MCL by van Dongen (2000). Given a graph
G = (V, E), the computational complexity is O(|E|) for CW and O(|V|3) for MCL.7 Addi-
tionally, we denote degmax as the maximum degree of G. Note that although, in general,
degmax is bound by |V|, in the real natural language-derived graphs this variable is
distributed according to a power law. It is small for the majority of the nodes in a graph,
making average running times acceptable in practice, as presented in Section 3.5.5.

3.5.1 Node Sense Induction. This operation is executed for every node of the input graph
G, that is, |V| times. By definition of an undirected graph, the maximum number of
neighbors of a node in G is degmax and the maximum number of edges in a neighbor-
hood is degmax(degmax−1)

2 . Thus, this operation takes O(|V|deg2
max) steps with CW and

O(|V|deg3
max) steps with MCL.

3.5.2 Disambiguation of Neighbors. Let sensesmax be the maximum number of senses for
a node and ctxmax be the maximum size of the node sense context. Thus, this operation
takes O(|V| × sensesmax × ctxmax) steps to iterate over all the node sense contexts. At
each iteration, it scans all the senses of the ambiguous node in context and com-
putes a similarity between its context and the candidate sense context in a linear time
(Section 3.5). This requires O(sensesmax × ctxmax) steps per each node in context. There-
fore, the whole operation takes O(|V| × senses2

max × ctx2
max) steps. Because the maxi-

mum number of node senses is observed in a special case when the neighborhood is an
unconnected graph, sensesmax ≤ degmax. Given the fact that the maximum context size
is observed in a special case when the neighborhood is a fully connected graph, ctxmax ≤

7 Although MCL can be implemented more efficiently than O(|V|3 ), cf. van Dongen (2000, page 125), we
would like to use the consistent worst case scenario notation for all the mentioned clustering algorithms.
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Table 5
Computational complexity of graph clustering algorithms, where |V| is the number of vertices,
|E| is the number of edges, and degmax is the maximum degree of a vertex. For brevity, we do not
insert rows corresponding to Simplified WATSET (Algorithm 2), which does not require the
O(|V|deg4

max) term related to context disambiguation.

Algorithm Hard or Soft Computational Complexity

Chinese Whispers (Biemann 2006) hard O(|E|)
Markov Clustering (van Dongen 2000) hard O(|V|3)
MaxMax (Hope and Keller 2013a) soft O(|E|)

Louvain method (Blondel et al. 2008) hard O(|V| log(|V|))
Clique Percolation (Palla et al. 2005) soft 2|V|

WATSET[CW, CW] soft O(|V|2 deg2
max + |V|deg4

max)

WATSET[CW, MCL] soft O(|V|3 deg3
max + |V|deg4

max)

WATSET[MCL, CW] soft O(|V|2 deg2
max + |V|deg4

max)

WATSET[MCL, MCL] soft O(|V|3 deg3
max + |V|deg4

max)

degmax. Thus, disambiguation of all the node sense contexts takes O(|V|deg4
max) steps.

Note that because the simplified version of WATSET, as described in Section 3.4, does
not perform context disambiguation, this term should be taken into account only for the
original version of WATSET (Algorithm 1).

3.5.3 Sense Graph Clustering. Like the input graph G, the sense graph G is undirected,
so it has at most |V|degmax nodes and |V|degmax(|V|degmax−1)

2 edges. Thus, this operation
takes O(|V|2 deg2

max) steps with CW and O(|V|3 deg3
max) steps with MCL.

3.5.4 Overall Complexity. Table 5 presents a comparison of WATSET to other hard and
soft graph clustering algorithms popular in computational linguistics,8 such as CW by
Biemann (2006), MCL by van Dongen (2000), and MaxMax by Hope and Keller (2013a).
Additionally, we compare WATSET with several graph clustering algorithms that are
popular in network science, such as the Louvain method by Blondel et al. (2008) and
CPM by Palla et al. (2005). The notation WATSET[MCL, CW] means using MCL for
local clustering and CW for global clustering (cf. the discussion on graph clustering
algorithms in Section 2.1).

The analysis shows that the most time-consuming operations in WATSET are sense
graph clustering and context disambiguation. Although the overall computational com-
plexity of our meta-algorithm is higher than that of the other methods, its compute-
intensive operations, such as node sense induction and context disambiguation, are

8 Our survey was based on Mihalcea and Radev (2011), Di Marco and Navigli (2013), and Lewis and
Steedman (2013a).
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Table 6
Parameters of the co-occurrence graphs for different corpus sizes in the Leipzig Corpora
Collection, where |V| is the number of vertices, |E| is the number of edges, and degmax is the
maximum degree of a vertex; time is measured in minutes.

Size |V| |E| degmax Sequential Time, min. Parallel Time, min.

10K 4,907 16,057 547 0.13± 0.01 0.04± 0.00
30K 11,627 55,181 1,307 0.91± 0.05 0.36± 0.02
100K 27,200 203,946 3,319 9.33± 0.13 3.78± 0.08
300K 55,359 630,138 7,467 53.34± 0.16 24.44± 0.18
1M 117,141 2,031,283 18,081 347.16± 1.97 158.00± 1.88

executed for every node independently, so the algorithm can easily be run in a parallel
or a distributed way to reduce the running time.

3.5.5 An Empirical Evaluation of Average Running Times. In order to evaluate the running
time of WATSET on a real-world scenario, we applied it to the clustering of co-occurrence
graphs. Word clusters discovered from co-occurrence graphs are the sets of semantically
related polysemous words, so we ran our sense-aware clustering algorithm to obtain
overlapping word clusters.

We used the English word co-occurrence graphs from the Leipzig Corpora Collec-
tion by Goldhahn, Eckart, and Quasthoff (2012) because it is partitioned into corpora
of different sizes.9 We evaluated the graphs corresponding to five different English
corpus sizes: 10K, 30K, 100K, 300K, and 1M tokens (Table 6). The measurements were
made independently among the graphs using the WATSET[CW, CW] algorithm with
the lowest complexity bound by O(|V|2 deg2

max + |V|deg4
max).

Because our implementation of WATSET in the Java programming language, as
described in Section 7, is multi-threaded and runs node sense induction and context
disambiguation steps in parallel, we study the benefit of multiple available central
processing unit (CPU) cores to the overall running time. The single-threaded setup that
uses only one CPU core will be referred to as sequential, while the multi-threaded setup
that uses all the CPU cores available on the machine will be referred to as parallel.

For each graph, we ran WATSET five times. Following Horký et al. (2015), the first
three runs were used off-record to warm-up the Java virtual machine. The next two runs
were used for actual measurement. We used the following computational node for this
experiment: two Intel Xeon E5-2630 v4 CPUs, 256 GB of ECC RAM, Ubuntu 16.04.4 LTS
(Linux 4.13.0, x86 64), Oracle Java 8b121; 40 logical cores were available in total. Table 6
reports the running time mean and the standard deviation for both setups, sequential
and parallel.

Figure 6 shows the polynomial growth of O(|V|2.52), which is smaller than the
worst case of O(|V|2 deg2

max + |V|deg4
max). This is because in co-occurrence graphs, as

well as in many other real-world graphs that also exhibit scale-free small world prop-
erties (Steyvers and Tenenbaum 2005), the degree distribution among nodes is strongly
right-skewed. This makes WATSET useful for processing real-world graphs. Both Table 6

9 http://wortschatz.uni-leipzig.de/en/download.
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Figure 6
Log-log plots showing growth of the empirical average running time in number of nodes (left)
and number of edges (right) of two WATSET[CWtop, CWtop] setups: sequential and parallel. The
dashed line is fitted to the running time data of the sequential version of WATSET, showing
polynomial growth in O(|V|2.52) and O(|E|1.63), respectively.

and Figure 6 clearly confirm that WATSET scales well and can be parallelized on multiple
CPU cores, which makes it possible to process very large graphs.

4. Application to Unsupervised Synset Induction

A synset is a set of mutual synonyms, which can be represented as a clique graph where
nodes are words and edges are synonymy relationships. Synsets represent word senses
and are building blocks of thesauri and lexical ontologies, such as WordNet (Fellbaum
1998). These resources are crucial for many NLP applications that require common sense
reasoning, such as information retrieval (Gong, Cheang, and Hou U 2005), sentiment
analysis (Montejo-Ráez et al. 2014), and question answering (Kwok, Etzioni, and Weld
2001; Zhou et al. 2013).

For most languages, no manually constructed resource is available that is compa-
rable to the English WordNet in terms of coverage and quality (Braslavski et al. 2016).
For instance, Kiselev, Porshnev, and Mukhin (2015) present a comparative analysis of
lexical resources available for the Russian language, concluding that there is no resource
compared with WordNet in terms of completeness and availability for Russian. This
lack of linguistic resources for many languages strongly motivates the development of
new methods for automatic construction of WordNet-like resources. In this section, we
apply WATSET for unsupervised synset induction from a synonymy graph and compare
it with state-of-the-art graph clustering algorithms run on the same task.
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4.1 Synonymy Graph Construction and Clustering

Wikipedia,10 Wiktionary,11 OmegaWiki,12 and other collaboratively created resources
contain a large amount of lexical semantic information—yet are designed to be human-
readable and not formally structured. Although semantic relationships can be automat-
ically extracted using tools such as DKPro JWKTL13 by Zesch, Müller, and Gurevych
(2008) and Wikokit14 by Krizhanovsky and Smirnov (2013), words in these relation-
ships are not disambiguated. For instance, the synonymy pairs {bank, streambank} and
{bank, banking company} will be connected via the word “bank,” although they refer to
different senses. This problem stems from the fact that articles in Wiktionary and similar
resources list “undisambiguated” synonyms. They are easy to disambiguate for humans
while reading a dictionary article but can be a source of errors for language processing
systems.

Although large-scale automatically constructed lexical semantic resources like Ba-
belNet (Navigli and Ponzetto 2012) are available, they contain synsets with relationships
other than synonymity. For instance, in BabelNet 4.0, the synset for bank as an institution
contains among other things non-synonyms like Monetary intermediation and Money-
lenders.15

A synonymy dictionary can be perceived as a graph, where the nodes correspond
to lexical units (words) and the edges connect pairs of the nodes when the synonymy
relationship between them holds. Because such a graph can easily be obtained for arbi-
trary language, we expect that constructing and clustering a sense-aware representation
of a synonymy graph yields plausible synsets covering polysemous words.

4.1.1 Synonymy Graph Construction. Given a synonymy dictionary, we construct the
synonymy graph G = (V, E) as follows. The set of nodes V includes every lexical unit
appearing in the input dictionary. An edge in the set of edges E ⊆ V2 is established
if and only if a pair of words are distinguished synonyms, according to the input
synonymy dictionary. To enhance our representation with the contextual semantic
similarity between synonyms, we assigned every edge {u, v} ∈ E a weight equal to the
cosine similarity of Skip-Gram word embeddings (Mikolov et al. 2013). As a result, we
obtained a weighted synonymy graph G.

4.1.2 Synonymy Graph Clustering. Because the graph G contains both monosemeous and
polysemous words without indication of the particular senses, we run WATSET to obtain
a soft clustering C of the synonymy graph G. Since our algorithm explicitly induces and
clusters the word senses, the elements of the clusters C are by definition synsets, that is,
sets of words that are synonymous with each other.

4.2 Evaluation

We conduct our experiments on resources from two different languages. We evalu-
ate our approach on two data sets for English to demonstrate its performance in a

10 http://www.wikipedia.org.
11 http://www.wiktionary.org.
12 http://www.omegawiki.org.
13 https://dkpro.github.io/dkpro-jwktl.
14 https://github.com/componavt/wikokit.
15 https://babelnet.org/synset?word=bn:00008364n.
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resource-rich language. Additionally, we evaluate it on two Russian data sets, because
Russian is a good example of an under-resourced language with a clear need for synset
induction (Kiselev, Porshnev, and Mukhin 2015).

4.2.1 Experimental Set-Up. We compare WATSET with five popular graph clustering
methods presented in Section 2.1: CW, MCL, MaxMax, ECO, and the CPM. The first
two algorithms perform hard clustering algorithms, and the last three are soft clustering
methods just like our method. Although the hard clustering algorithms are able to
discover clusters that correspond to synsets composed of unambiguous words, they can
produce wrong results in the presence of lexical ambiguity when a node should belong
to several synsets. In our experiments, we use CW and MCL also as the underlying
algorithms for local and global clustering in WATSET, so our comparison will show the
difference between the “plain” underlying algorithms and their utilization in WATSET.
We also report the performance of Simplified WATSET (Section 3.4).

In our experiments, we rely on our own implementation of MaxMax and ECO, as
reference implementations are not available. For CW,16 MCL,17 and CPM,18 available
implementations have been used. During the evaluation, we delete clusters equal to or
larger than the threshold of 150 words, as they can hardly represent any meaningful
synset. Only the clusters produced by the MaxMax algorithm were actually affected by
this threshold.

Quality Measure. To evaluate the quality of the induced synsets, we transform them into
synonymy pairs and computed precision, recall, and F1-score on the basis of the overlap
of these synonymy pairs with the synonymy pairs from the gold standard data sets. The
F1-score calculated this way is known as paired F-score (Manandhar et al. 2010; Hope
and Keller 2013a). Let C be the set of obtained synsets and CG be the set of gold synsets.
Given a synset containing n > 1 words, we generate n(n−1)

2 pairs of synonyms, so we
transform C into a set of pairs P and CG into a set of gold pairs PG. We then compute the
numbers of positive and negative answers as follows:

TP = |P ∪ PG| (9)

FP = |P \ PG| (10)

FN = |PG \ P| (11)

where TP is the number of true positives, FP is the number of false positives, and FN is
the number of false negatives. As a result, we use the standard definitions of precision
as Pr = TP

TP+FP , recall as Re = TP
TP+FN , and F1-score as F1 = 2·Pr·Re

Pr+Re . The advantage of
this measure compared with other cluster evaluation measures, such as fuzzy B-Cubed
(Jurgens and Klapaftis 2013) and normalized modified purity (Kawahara, Peterson, and
Palmer 2014), is its straightforward interpretability.

Statistical Testing. We evaluate the statistical significance of the experimental results
using a McNemar’s test (1947). Given the results of two algorithms, we build a
2× 2 contingency table and compute the p-value of the test using the Statsmodels

16 https://github.com/uhh-lt/chinese-whispers.
17 https://micans.org/mcl/.
18 https://networkx.github.io.
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Table 7
Statistics of the gold standard data sets used in our experiments.

Resource Language # words # synsets # pairs

WordNet English 148,730 117,659 152,254
BabelNet 11,710,137 6,667,855 28,822,400

RuWordNet Russian 110,242 49,492 278,381
YARN 9,141 2,210 48,291

toolkit (Seabold and Perktold 2010).19 Since the hypothesis tested by the McNemar’s
test is whether the results from both algorithms are similar against the alternative that
they are not, we use the p-value of this test to assess the significance of the difference
between F1-scores (Dror et al. 2018). We consider the performance of one algorithm to
be higher than the performance of another if its F1-score is larger and the corresponding
p-value is smaller than a significance level of 0.01.

Gold Standards. We conduct our evaluation on four lexical semantic resources for two
different natural languages. Statistics of the gold standard data sets are present in
Table 7. We report the number of lexical units (# words), synsets (# synsets), and the
generated synonymy pairs (# pairs).

We use WordNet,20 a popular English lexical database constructed by expert lexicog-
raphers (Fellbaum 1998). WordNet contains general vocabulary and appears to be the
de facto gold standard in similar tasks (Hope and Keller 2013a). We used WordNet 3.1 to
derive the synonymy pairs from synsets. Additionally, to compare to an automatically
constructed lexical resource, we use BabelNet,21 a large-scale multilingual semantic
network based on WordNet, Wikipedia, and other resources (Navigli and Ponzetto
2012). We retrieved all the synonymy pairs from the BabelNet 3.7 synsets marked as
English, using the BabelNet Extract tool (Ustalov and Panchenko 2017).

As a lexical ontology for Russian, we use RuWordNet22 by Loukachevitch et al.
(2016), containing both general vocabulary and domain-specific synsets related to sport,
finance, economics, and so forth. Up to one half of the words in this resource are
multi-word expressions (Kiselev, Porshnev, and Mukhin 2015), which is due to the
coverage of domain-specific vocabulary. RuWordNet is a WordNet-like version of the
RuThes thesaurus that is constructed in the traditional way, namely by a small group of
expert lexicographers (Loukachevitch 2011). In addition, we use Yet Another RussNet23

(YARN) by Braslavski et al. (2016) as another gold standard for Russian. The resource is
constructed using crowdsourcing and mostly covers general vocabulary. In particular,
non-expert users are allowed to edit synsets in a collaborative way, loosely supervised
by a team of project curators. Because of the ongoing development of the resource, we
selected as the silver standard only those synsets that were edited at least eight times

19 https://www.statsmodels.org/.
20 https://wordnet.princeton.edu.
21 https://www.babelnet.org.
22 https://ruwordnet.ru/en.
23 https://russianword.net/en.
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Table 8
Statistics of the input data sets used in our experiments.

Language # words # pairs

English 243,840 212,163
Russian 83,092 211,986

in order to filter out noisy incomplete synsets.24 We do not use BabelNet for evaluating
the Russian synsets, as our manual inspection during prototyping showed, on average,
a much lower quality than its English subset.

Input Data. For each language, we constructed a synonymy graph using openly avail-
able synonymy dictionaries. The statistics of the graphs used as the input in the further
experiments are shown in Table 8.

For English, synonyms were extracted from the English Wiktionary,25 which is the
largest Wiktionary at the present moment in terms of the lexical coverage, using the
DKPro JWKTL tool by Zesch, Müller, and Gurevych (2008). English words have been
extracted from the dump.

For Russian, synonyms from three sources were combined to improve lexical
coverage of the input dictionary and to enforce confidence in jointly observed syn-
onyms: (1) synonyms listed in the Russian Wiktionary extracted using the Wikokit tool
by Krizhanovsky and Smirnov (2013); (2) the dictionary of Abramov (1999); and (3)
the Universal Dictionary of Concepts (Dikonov 2013). Whereas the two latter resources
are specific to Russian, Wiktionary is available for most languages. Note that the same
input synonymy dictionaries were used by authors of YARN to construct synsets using
crowdsourcing. The results on the YARN data set show how closely an automatic
synset induction method can approximate manually created synsets provided the same
starting material.26

Because of the vocabulary differences between the input data and the gold standard
data sets, we use the intersection between the lexicon of the gold standard and the
united lexicon of all the compared configurations of the algorithms during all the
experiments in this section.

4.2.2 Parameter Tuning. We tuned the hyper-parameters for such methods as CPM (Palla
et al. 2005) and ECO (Gonçalo Oliveira and Gomes 2014) on the evaluation data set. We
do not perform any tuning of WATSET because the underlying local and global clus-
tering algorithms, CW and MCL, are parameter-free, so we use default configurations
of these and their variations. As CPMk=3 we denote that this method showed the best
performance using the threshold value of k = 3. For ECO, we found the threshold value
of θ = 0.05 yielding the best results, as opposed to the value of θ = 0.2 suggested by
Gonçalo Oliveira and Gomes (2014).

24 In YARN, an edit operation can be an addition or a removal of a synset element; an average synset in our
data set contains 6.77± 3.54 words.

25 We used the Wiktionary dumps of February 1, 2017.
26 We used the YARN dumps of February 7, 2017.
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Figure 7
Impact of the different graph-weighting schemas on the performance of synset induction. Each
bar corresponds to the top performance of a method in Tables 9 and 10.

We also study the performance impact of different edge-weighting approaches for
the same input graph. For that, we present the results of running the same algorithms in
three different setups: ones that assigns every edge the constant weight of 1, count that
weights the edge {u, v} ∈ E with the number of times a synonymy pair appeared in the
input dictionary, and sim that uses cosine similarity between word embeddings, as de-
scribed in Section 4.1.1. For English, we use the commonly used 300-dimensional word
embeddings trained on the 100 billion tokens Google News corpus.27 For Russian, we
use the 500-dimensional embeddings from the Russian Distributional Thesaurus trained
on a 12.9 billion tokens corpus of books, which yielded the state-of-art performance on
a shared task on Russian semantic similarity (Panchenko et al. 2017).28

4.2.3 Results and Discussion. Figure 7 presents an overview of the evaluation results on
both data sets. Because the synonymy graph construction step is the same for all the
experiments, we start our analysis with the comparison of different edge-weighting
approaches introduced in Section 4.2.2: constant values (ones), frequencies (count), and
semantic similarity scores (sim) based on word vector similarity. Results across various
configurations and methods indicate that using the weights based on the similarity
scores provided by word embeddings is the best strategy for all methods except Max-
Max on the English data sets. However, its performance using the ones weighting
does not exceed the other methods using the sim weighting. Therefore, we report all
further results on the basis of the sim weights. The edge weighting scheme impacts
Russian more for most algorithms. The CW algorithm, however, remains sensitive to
the weighting also for the English data set due to its randomized nature.

27 https://code.google.com/archive/p/word2vec/.
28 https://doi.org/10.5281/zenodo.163857.
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Table 9
Comparison of the synset induction methods on data sets for English. All methods rely on the
similarity edge weighting (sim); best configurations of each method in terms of F1-scores are
shown for each data set. Results are sorted by F1-score on BabelNet; top three values of each
measure are boldfaced, and statistically significant results are marked with an asterisk (∗).
Simplified WATSET is denoted as WATSET§.

Method
#

w
or

ds

#
sy

ns
et

s

#
pa

ir
s

WordNet BabelNet

Pr Re F1 Pr Re F1

WATSET[MCL, MCL] 243,840 112,267 345,883 34.48 30.82 32.54∗ 40.01 30.06 34.33∗
MCL 243,840 84,679 387,315 34.21 29.10 31.45∗ 38.98 29.97 33.89∗
CWtop 243,840 77,879 539,753 28.54 31.67 30.02∗ 32.57 31.71 32.14∗

WATSET[CWlog, MCL] 243,840 164,689 227,906 39.35 27.99 32.71∗ 43.94 24.47 31.44∗

WATSET§[CWtop, MCL] 243,840 164,683 227,872 39.17 27.83 32.54∗ 43.87 24.40 31.36∗

WATSET§[CWlog, MCL] 243,840 165,406 222,554 40.20 27.44 32.62∗ 44.63 24.09 31.29∗

CPMk=2 186,896 67,109 317,293 56.06 14.06 22.48∗ 49.23 21.44 29.87∗
MaxMax 219,892 73,929 797,743 17.59 29.97 22.17∗ 20.16 31.34 24.53∗
ECO 243,840 171,773 84,372 78.41 6.95 12.77 69.91 9.59 16.87

Tables 9 and 10 present evaluation results for both languages. For each method, we
show the best configurations in terms of F1-score. One may note that the granularity of
the resulting synsets, especially for Russian, is very different, ranging from 4,000 synsets
for the CPMk=3 method to 67,645 induced by the ECO method. Both tables report the
number of words, synsets, and synonyms after pruning huge clusters larger than 150
words. Without this pruning, the MaxMax and CPM methods tend to discover giant
components obtaining almost zero precision as we generate all possible pairs of nodes
in such clusters. The other methods did not exhibit such behavior.

The disambiguation of the input graph performed by the WATSET method splits
nodes belonging to several local communities to several nodes, significantly facilitating
the clustering task otherwise complicated by the presence of the hubs that wrongly
link semantically unrelated nodes. WATSET robustly outperformed all other methods,

Table 10
Results on data sets for Russian sorted by F1-score on Yet Another RussNet (YARN); top three
values of each measure are boldfaced and statistically significant results are marked with an
asterisk (∗). Simplified WATSET is denoted as WATSET§.

Method

#
w

or
ds

#
sy

ns
et

s

#
pa

ir
s

RuWordNet YARN

Pr Re F1 Pr Re F1

WATSET§[CWlin, MCL] 83,092 58,353 242,615 15.01 32.55 20.55∗ 46.70 42.69 44.61∗
WATSET[CWlin, MCL] 83,092 55,369 332,727 11.95 34.91 17.81∗ 40.10 46.32 42.99∗
MCL 83,092 21,973 353,848 15.54 29.10 20.26∗ 54.95 33.94 41.97∗
CWlin 83,092 19,124 672,076 8.73 34.20 13.91∗ 36.33 45.13 40.25∗
WATSET§[MCL, CWlin] 83,092 62,700 175,643 19.46 28.48 23.12∗ 52.28 29.41 37.65∗
MaxMax 83,092 27,011 461,748 17.58 26.09 21.01∗ 58.24 19.49 29.20∗
CPMk=3 15,555 4,000 45,231 23.44 7.23 11.05∗ 62.51 6.04 11.02∗
ECO 83,092 67,645 18,362 72.41 3.45 6.58 90.36 0.18 0.36
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according to the F1-score on all the data sets for English (Table 9) and Russian (Table 10).
In particular, on WordNet for English, WATSET[CWlog, MCL] has statistically signifi-
cantly outperformed all other methods (p� 0.01), including different configurations of
our algorithm. On BabelNet for English, WATSET[MCL, MCL] showed a similar behav-
ior (p� 0.01). On RuWordNet for Russian, Simplified WATSET[MCL, CWlin] statis-
tically significantly outperformed all other algorithms, including highly competitive MCL
and MaxMax (p � 0.01). Similarly, on YARN for Russian, Simplified WATSET[CWlin,
MCL] has significantly outperformed all the other algorithms (p� 0.01).

Interestingly, in all the cases, the toughest competitor was a hard clustering
algorithm—MCL (van Dongen 2000). We observed that the “plain” MCL successfully
groups monosemous words, but isolates the neighborhood of polysemous words, which
results in the recall drop in comparison to WATSET. CW operates more quickly due to
a simplified update step. On the same graph, CW tends to produce larger clusters than
MCL. This leads to a higher recall of “plain” CW as compared with the “plain” MCL,
at the cost of lower precision. Although MCL demonstrated highly competitive results,
the best configuration of WATSET has statistically significantly outperformed it on all
the data sets.

Using MCL instead of CW for sense induction in WATSET expectedly produced
more fine-grained senses. However, at the global clustering step, these senses erro-
neously tend to form coarse-grained synsets connecting unrelated senses of the am-
biguous words. This explains the generally higher recall of WATSET[MCL, ·]. Despite
the randomized nature of CW, variance across runs do not affect the overall ranking.
The rank of different weighting schemes on the node degree of CWtop/lin/log can change,
while the rank of the best CW configuration compared to other methods remains the
same.

The MaxMax algorithm showed mixed results. On the one hand, it outputs large
clusters uniting more than a hundred nodes. This inevitably leads to a high recall, as it
is clearly seen in the results for Russian because such synsets still pass under our cluster
size threshold of 150 words. Its synsets on the English data sets are even larger and
have been pruned, which resulted in the low recall. On the other hand, smaller synsets
having at most 10–15 words were identified correctly. MaxMax appears to be extremely
sensitive to edge weighting, which also complicates its application in practice.

The CPM algorithm showed unsatisfactory results, emitting giant components en-
compassing thousands of words. Such clusters were automatically pruned, but the
remaining clusters are quite correct synsets, which is confirmed by the high preci-
sion values. When increasing the minimal number of elements in the clique k, recall
improves, but at the cost of a dramatic precision drop. We suppose that the network
structure assumptions exploited by CPM do not accurately model the structure of our
synonymy graphs.

Finally, the ECO method yielded the worst results because most of the cluster
candidates failed to pass through the constant threshold used for estimating whether
a pair of words should be included in the same cluster. Most synsets produced by this
method were trivial (i.e., containing only a single word). The remaining synsets for both
languages have at most three words that have been connected by chance due to the edge
noising procedure used in this method, resulting in a low recall.

The results obtained on all gold standards (Figure 7) show similar trends in terms
of relative ranking of the methods. Yet absolute scores of YARN and RuWordNet are
substantially different because of the inherent difference of these data sets. RuWordNet
is more domain-specific in terms of vocabulary, so our input set of generic synonymy
dictionaries has a limited coverage on this data set. On the other hand, recall calculated
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Table 11
Sample synsets induced by the WATSET[MCL, MCL] method for English using the sim
weighting approach.

Size Synset

2 decimal point, dot
2 wall socket, power point
3 gullet, throat, food pipe
3 CAT, computed axial tomography, CT
4 microwave meal, ready meal, TV dinner, frozen dinner
4 mock strawberry, false strawberry, gurbir, Indian strawberry
5 objective case, accusative case, oblique case, object case, accusative
5 discipline, sphere, area, domain, sector
6 radio theater, dramatized audiobook, audio theater, radio play, radio drama, audio

play
6 integrator, reconciler, consolidator, mediator, harmonizer, uniter
7 invite, motivate, entreat, ask for, incentify, ask out, encourage
7 curtail, craw, yield, riding crop, harvest, crop, hunting crop

on YARN is substantially higher as this resource was manually built on the basis of
synonymy dictionaries used in our experiments.

Table 11 presents examples of the obtained synsets of various sizes for the top
WATSET configuration on English. As one might observe, the quality of the results is
highly plausible. Because in this configuration we assigned edge weights based on the
cosine of the angle between Skip-Gram word vectors (Mikolov et al. 2013), we should
note that such an approach assigns high values of similarity not just to synonymous
words, but to antonymous and generally any lexically related words. This is a common
problem with lexical embedding spaces, which we tried to evade by explicitly using a
synonymy dictionary as an input. For example, “audio play” and “radio play,” or “ac-
cusative” and “oblique,” are semantically related expressions, but really not synonyms.
Such a problem can be addressed using techniques such as retrofitting (Faruqui et al.
2015) and contextualization (Peters et al. 2018).

However, one limitation of all the approaches considered in this section is the
dependence on the completeness of the input dictionary of synonyms. In some parts of
the input synonymy graph, important bridges between words can be missing, leading
to smaller-than-desired synsets. A promising extension of the present methodology is
using distributional models to enhance connectivity of the graph by cautiously adding
extra relationships (Ustalov et al. 2017).

Cross-Resource Evaluation. In order to estimate the upper bound of precision, recall, and
F1-score in our synset induction experiments, we conducted a cross-resource evaluation
between the used gold-standard data sets (Table 12). Similarly to the experimental setup
described in Section 4.2.1, we transformed synsets from every data set into sets of syn-
onymy pairs. Then, for every pair of gold standard data sets, we computed the pairwise
precision, recall, and F1-score by assessing synset-induced synonymy pairs of one data
set on the pairs of another data set. As a result, we see that the low absolute numbers in
evaluation are due to an inherent vocabulary mismatch between the input dictionaries
of synonyms and the gold data sets because no single resource for Russian can obtain
high recall scores on another one. Surprisingly, even BabelNet, which integrates most
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Table 12
Performance of lexical resources cross-evaluated against each other.

Input Synsets Gold Synsets Language Pr Re F1

BabelNet WordNet English 72.93 99.76 84.26
WordNet BabelNet 99.79 69.86 82.18

YARN RuWordNet Russian 16.36 16.21 16.28
BabelNet RuWordNet 34.84 40.87 37.61

RuWordNet YARN Russian 66.96 12.13 20.54
BabelNet YARN 51.53 10.89 17.98

of the available lexical resources, still does not reach a recall substantially larger than
50%.29 Note that the results of this cross-data set evaluation are not directly comparable
to results in Table 10 since in our experiments we use much smaller input dictionaries
than those used by BabelNet. Our cross-resource evaluation demonstrates that unlike
WordNet and BabelNet, which are built on a similar conceptual basis, RuWordNet and
YARN have a very different structure, so an algorithm that shows good results on one
will likely not perform very well on another.

5. Application to Unsupervised Semantic Frame Induction

In this section, our goal is to investigate the applicability of our graph clustering
technique in a different task. Namely, we explore how semantic frames—more complex
linguistic structures than synsets—can be induced from text using WATSET. A semantic
frame is a central concept of the Frame Semantics theory (Fillmore 1982). A frame is a
structure that describes a certain situation or action (e.g., “Dining” or “Kidnapping”)
in terms of participants involved in these actions, which fill semantic roles of this
frame and words commonly describing such situations. Figure 8 illustrates a part of
the “Kidnapping” semantic frame from the FrameNet resource.30

Recent years have seen much work on frame semantics, enabled by the availability
of a large set of frame definitions, as well as a manually annotated text corpus provided
by the FrameNet project (Baker, Fillmore, and Lowe 1998). FrameNet data enabled the
development of wide-coverage frame parsers using supervised learning (Gildea and
Jurafsky 2002; Erk and Padó 2006; Das et al. 2014, inter alia), as well as its application
to a wide range of tasks, ranging from answer extraction in Question Answering (Shen
and Lapata 2007) and Textual Entailment (Burchardt et al. 2009; Ben Aharon, Szpektor,
and Dagan 2010), to event-based predictions of stock markets (Xie et al. 2013).

However, frame-semantic resources are arguably expensive and time-consuming
to build due to difficulties in defining the frames, their granularity, and domain.
The complexity of the frame construction and annotation tasks require expertise in
the underlying knowledge. Consequently, such resources exist only for a few lan-
guages (Boas 2009) and even English is lacking domain-specific frame-based resources.
Possible inroads are cross-lingual semantic annotation transfer (Padó and Lapata 2009;

29 We used BabelNet 3.7 extracting all 3,497,327 synsets that were marked as Russian.
30 https://framenet.icsi.berkeley.edu/fndrupal/luIndex.
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Figure 8
Definition, examples, core semantic roles, and frame invoking lexical units of the semantic frame
“Kidnapping” from the FrameNet resource.

Hartmann, Eckle-Kohler, and Gurevych 2016) or linking FrameNet to other lexical-
semantic or ontological resources (Narayanan et al. 2003; Tonelli and Pighin 2009;
Laparra and Rigau 2010; Gurevych et al. 2012, inter alia). But whereas the arguably
simpler task of PropBank-based Semantic Role Labeling has been successfully ad-
dressed by unsupervised approaches (Lang and Lapata 2010; Titov and Klementiev
2011), fully unsupervised frame-based semantic annotation exhibits far more chal-
lenges, starting with the preliminary step of automatically inducing a set of semantic
frame definitions that would drive a subsequent text annotation. We aim at overcoming
these issues by automatizing the process of FrameNet construction through unsuper-
vised frame induction techniques using WATSET.

According to our statistics on the dependency-parsed FrameNet corpus of over 150
thousand sentences (Bauer, Fürstenau, and Rambow 2012), the SUBJ and OBJ relation-
ships are the two most common shortest paths between frame evoking elements (FEEs)
and their roles, accounting for 13.5% of instances of a heavy-tail distribution of over
11,000 different paths that occur three times or more in the FrameNet data. Although
this might seem a simplification that does not cover prepositional phrases and frames
filling the roles of other frames in a nested fashion, we argue that the overall frame
inventory can be induced on the basis of this restricted set of constructions, leaving
other paths and more complex instances for further work. Thus, we expect the triples
obtained from such a Web-scale corpus as DepCC (Panchenko et al. 2018a) to cover most
core arguments sufficiently. In contrast to the recent approaches like the one by Jauhar
and Hovy (2017), the approach we describe in this section induces semantic frames
without any supervision, yet captures only two core roles: the subject and the object of a
frame triggered by verbal predicates. Note that it is not generally correct to expect that
the SVO triples obtained by a dependency parser are necessarily the core arguments of
a predicate. Such roles can be implicit, that is, unexpressed in a given context (Schenk
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Table 13
Example of a tricluster of lexical units corresponding to the “Kidnapping” frame from FrameNet.

FrameNet Role Lexical Units (LU)

Perpetrator Subject kidnapper, alien, militant
FEE Verb snatch, kidnap, abduct
Victim Object son, people, soldier, child

and Chiarcos 2016), so additional syntactic relationships between frame elements could
be taken into account (Kallmeyer, QasemiZadeh, and Cheung 2018).

We cast the frame induction problem as a triclustering task (Zhao and Zaki 2005;
Ignatov et al. 2015). Triclustering is a generalization of traditional clustering and biclus-
tering problems (Mirkin 1996, page 144), aiming at simultaneously clustering objects
along three dimensions, namely, subject, verb, and object in our case (cf. Table 13). First,
triclustering allows us to avoid the prevalent pipelined architecture of frame induction
approaches, for example, the one by Kawahara, Peterson, and Palmer (2014), where
two independent clusterings are needed. Second, benchmarking frame induction as
triclustering against other methods on dependency triples makes it possible to abstract
away the evaluation of frame induction algorithms from other factors, for example,
the input corpus or pre-processing steps, thus allowing a fair comparison of different
induction models.

5.1 Frame Induction as a Triclustering Task

We focused on a simple setup for semantic frame induction using two roles and SVO
triples, arguing that it still can be useful as frame roles are primarily expressed by
subjects and objects, giving rise to semantic structures extracted in an unsupervised way
with high coverage. Thus, given a vocabulary V and a set of SVO triples T ⊆ V3 from
a syntactically analyzed corpus, our approach for frame induction, called Triframes,
constructs a triple graph and clusters it using the WATSET algorithm described in
Section 3.

Triframes reduces the frame induction problem to a simpler graph clustering prob-
lem. The algorithm has three steps: construction, clustering, and extraction. The triple
graph construction step, as described in Section 5.1.1, uses a d-dimensional word embed-
ding model v ∈ V → ~v ∈ Rd to embed triples in a dense vector space for establishing
edges between them. The graph clustering step, as described in Section 5.1.2, uses a
clustering algorithm like WATSET to obtain sets of triples corresponding to the instances
of the semantic frames. The final aggregation step, as described in Section 5.1.3, trans-
forms the discovered triple clusters into frame-semantic representations. Triframes is
parameterized by the number of nearest neighbors k ∈ N for establishing edges and a
graph clustering algorithm Cluster. The complete pseudocode of Triframes is presented
in Algorithm 3.

5.1.1 SVO Triple Similarity Graph Construction. We construct the triple graph G = (T, E)
in which the triples are connected to each other according to the semantic similarity of
their elements: subjects, verbs, objects. To express similarity, we embed the triples using
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Algorithm 3 Unsupervised Semantic Frame Induction from Subject-Verb-Object Triples.

Input: a set of SVO triples T ⊆ V3,
an embedding model v ∈ V → ~v ∈ Rd,
the number of nearest neighbors k ∈ N,
a graph clustering algorithm Cluster.

Output: a set of triframes F.
1: for all t = (s, p, o) ∈ T do . Embed the triples
2: ~t← ~s⊕ ~p⊕ ~o
3: E← {(t, t′) ∈ T2 : t′ ∈ NNk(t), t 6= t′} . Construct edges using nearest neighbors
4: G← (T, E)
5: F← ∅
6: for all Ci ∈ Cluster(G) do . Cluster the graph
7: fs ← {s ∈ V : (s, v, o) ∈ Ci} . Aggregate subjects
8: fv ← {v ∈ V : (s, v, o) ∈ Ci} . Aggregate verbs
9: fo ← {o ∈ V : (s, v, o) ∈ Ci} . Aggregate objects

10: F← F ∪ {(fs, fv, fo)}
11: return F

distributional representations of words. In particular, we use a word embedding model
to map every triple t = (s, p, o) ∈ T to a (3d)-dimensional vector~t = ~s⊕ ~p⊕ ~o (lines 1–2).
Such a representation enables computing the distance between the triples as a whole
rather than between individual elements of them. The use of distributional models like
Skip-Gram (Mikolov et al. 2013) makes it possible to take into account the contextual
information of the whole triple. The concatenation of the vectors for words forming
triples leads to the creation of a (|T| × 3d)-dimensional vector space. Figure 9 illustrates
this idea: We expect structurally similar triples of different elements to be located in a
dense vector space close to each other, and non-similar triples to be located far away
from each other.

Given a triple t ∈ T, we denote the k ∈ N nearest neighbors extraction procedure of
its concatenated embedding from the formed vector space as NNk(t) ⊆ T \ {t}. Then, we
use the triple embeddings to generate the undirected graph G = (T, E) by constructing
the edge set E ⊆ T2. For that, we retrieve k nearest neighbors of each triple vector~t ∈ R3d

Figure 9
Concatenation of the vectors corresponding to the triple elements, subjects, verbs, and objects,
expresses the structural similarity of the triples.
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government, run, market

government, run, show

government, run, hospital

government, run, society

failure, rattle, market

failure, spook, market

protection, protect, consumer

Figure 10
Example of two senses associated with a triple (government, run, market).

and establish cosine similarity-weighted edges between the corresponding triples. We
establish edges only between the triples appearing in k nearest neighbors (lines 3–4):

E = {(t, t′) ∈ T2 : t′ ∈ NNk(t)} (12)

As a result, the constructed triple graph G has a clustered structure in which the
clusters are sets of SVO triples representing the same frame.

5.1.2 Similarity Graph Clustering. We assume that the triples representing similar contexts
fill similar roles, which is explicitly encoded by the concatenation of the corresponding
vectors of the words constituting the triple (Figure 9). We use the WATSET algorithm to
obtain the clustering of the SVO triple graph G (line 6). As described in Section 3, our
algorithm treats the SVO triples as the vertices T of the input graph G = (T, E), induces
their senses (Figure 10), and constructs an intermediate sense-aware representation that
is clustered using a hard clustering algorithm like CW (Biemann 2006). WATSET is a
suitable algorithm for this problem because of its performance on the related synset
induction task (Section 4), its fuzzy nature, and its ability to find the number of frames
automatically.

5.1.3 Aggregating Triframes. Finally, for each cluster Ci ∈ C, we aggregate the subjects, the
verbs, and the objects of the contained triples into separate sets (lines 7–9). As a result,
each cluster is transformed into a triframe, which is a triple that is composed of the
subjects fs ⊆ V, the verbs fv ⊆ V, and the objects fo ⊆ V. For example, the triples shown
in Figure 9 will form a triframe ({man, people, woman}, {make, earn}, {profit, money}).

5.2 Evaluation

Currently, there is no universally accepted approach for evaluating unsupervised
frame induction methods. All the previously developed methods were evaluated on
completely different incomparable setups and used different input corpora (Titov and
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Klementiev 2012; Materna 2013; O’Connor 2013, etc.). We propose a unified methodol-
ogy by treating the complex multi-stage frame induction task as a straightforward triple
clustering task.

5.2.1 Experimental Setup. We compare our method, Triframes WATSET, to several avail-
able state-of-the-art baselines applicable to our data set of triples (Section 2.3). LDA-
Frames by Materna (2012, 2013) is a frame induction method based on topic modeling.
Higher-Order Skip-Gram (HOSG) by Cotterell et al. (2017) generalizes the Skip-Gram
model (Mikolov et al. 2013) by extending it from word-context co-occurrence matrices
to tensors factorized with a polyadic decomposition. In our case, this tensor consisted
of SVO triple counts. NOAC by Egurnov, Ignatov, and Mephu Nguifo (2017) is an
extension of the Object-Attribute-Condition (OAC) triclustering algorithm by Ignatov
et al. (2015) to numerically weighted triples. This incremental algorithm searches for
dense regions in triadic data. Also, we use five simple baselines. In the Triadic baselines,
independent word embeddings of subject, object, and verb are concatenated and then
clustered using k-means (Hartigan and Wong 1979) and spectral clustering (Shi and
Malik 2000). In Triframes CW, instead of WATSET, we use CW, a hard graph clustering
algorithm (Biemann 2006). We also evaluate the performance of Simplified WATSET
(Section 3.4). Finally, two trivial baselines are Singletons that creates a single cluster per
instance and Whole that creates one cluster for all elements.

Quality Measure. Following the approach for verb class evaluation by Kawahara,
Peterson, and Palmer (2014), we use normalized modified purity (nmPU) and normalized
inverse purity (niPU) as the quality measures for overlapping clusterings. Given the
clustering C and the gold clustering CG, normalized modified purity quantifies the
clustering precision as the average of the weighted overlap δCi (Ci ∩ Cj

G) between each
cluster Ci ∈ C and the gold cluster Ci

G ∈ CG, which maximizes the overlap with Ci:

nmPU = 1
|C|

|C|∑
i∈N:|Ci|>1

max
1≤j≤|CG|

δCi (Ci ∩ Cj
G) (13)

where the weighted overlap is the sum of the weights Ci,v for each word v ∈ Ci in i-th
cluster: δCi (Ci ∩ Cj

G) =
∑

v∈Ci∩Cj
G

Ci,v. Note that nmPU counts all the singleton clusters

as wrong. Similarly, normalized inverse purity (collocation) quantifies the clustering
recall:

niPU = 1
|CG|

|G|∑
j=1

max
1≤i≤|C|

δCj
G

(Ci ∩ Cj
G) (14)

Then, nmPU and niPU are combined together as the harmonic mean to yield the
overall clustering F1-score, computed as F1 = 2 nmPU·niPU

nmPU+niPU , which we use to rank the
approaches.

Our framework can be extended to the evaluation of more than two roles by
generating more roles per frame. Currently, given a set of gold triples generated from
the FrameNet, each triple element has a role—for example, “Victim,” “Predator,” and
“FEE.” We use a fuzzy clustering evaluation measure that operates not on triples, but
instead on a set of tuples. Consider for instance a gold triple (Freddy: Predator, kidnap:
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FEE, kid: Victim). It will be converted to three pairs (Freddy, Predator), (kidnap, FEE),
(kid, Victim). Each cluster in both C and CG is transformed into a union of all constituent
typed pairs. The quality measures are finally calculated between these two sets of tuples
corresponding to C and CG. Note that one can easily pull in more than two core roles
by adding to this gold standard set of tuples other roles of the frame, e.g., {(forest,
Location)}. In our experiments, we focused on two main roles as our contribution is
related to the application of triclustering methods. However, if more advanced methods
of clustering are used, yielding clusters of arbitrary modality (n-clustering), one could
also use our evaluation scheme.

Statistical Testing. Because the normalization term of the quality measures used in this
experiment does not allow us to compute a contingency table, we cannot directly apply
the McNemar’s test or a location test to evaluate the statistical significance of the results
as we did in our synset induction experiment (Section 4.2.1). Thus, we have applied a
bootstrapping approach for statistical significance evaluation as follows. Given a set of
clusters C and a set of gold standard clusters CG, we bootstrap an N-sized distribution of
F1-scores. On each iteration, we take a sample C′ with replacements of |C| elements from
C. Then, we compute nmPU, niPU, and F1 on C′ against the gold standard clustering
CG. Finally, for each pair of compared algorithms we use a two-tailed t-test (Welch 1947)
from the Apache Commons Math library31 to assess the significance of the difference in
means between the corresponding bootstrap F1-score distributions. Thus, we consider
the performance of one algorithm to be higher than the performance of another if both
the p-value of the t-test is smaller than the significance level of 0.01 and the mean
bootstrap F1-score of the first method is larger than that of the second. Because of a high
computational complexity of bootstrapping (Dror et al. 2018), we had to limit the value
of N to 5,000 in the frame induction experiment and to 10,000 in the verb clustering
experiment.

Gold Standard Data Sets. We constructed a gold standard set of triclusters. Each tri-
cluster corresponds to a FrameNet frame, similarly to the one illustrated in Table 13.
We extracted frame annotations from the over 150,000 sentences from FrameNet 1.7
(Baker, Fillmore, and Lowe 1998). We used the frame, FEE, and argument labels in this
data set to generate triples in the form (wordi : role1, wordj : FEE, wordk : role2), where
wordi/j/k corresponds to the roles and FEE in the sentence. We omitted roles expressed
by multiple words as we use dependency parses, where one node represents a single
word only.

For the sentences where more than two roles are present, all possible triples were
generated. For instance, consider the sentence “Two men kidnapped a soccer club employee
at the train station,” where “men” has the semantic role of Perpetrator, “employee” has
the semantic role of Victim, “station” has the semantic role of Place, and the word “kid-
napped” is a frame-evoking lexical element (see Figure 8). In this sentence containing
three semantic roles, the following triples will be generated: (men: Perpetrator, kid-
nap: FEE, employee: Victim), (men: Perpetrator, kidnap: FEE, station: Place), (employee:
Victim, kidnap: FEE, station: Place). Sentences with less than two semantic roles were
not considered. Finally, for each frame, we selected only two roles that are the most
frequently co-occurring in the FrameNet annotated texts. This has left us with about
105 instances for the evaluation. For purposes of the evaluation, we operate on the

31 https://commons.apache.org/proper/commons-math/.
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Table 14
Statistics of the evaluation data sets.

Data set # instances # unique # clusters

FrameNet Triples (Bauer et al. 2012) 99,744 94,170 383
Polysemous Verb Classes (Korhonen et al. 2003) 246 110 62

intersection of triples from DepCC and FrameNet. Experimenting on the full set of
DepCC triples is only possible for several methods that scale well (WATSET, CW,
k-means), but is prohibitively expensive for other methods (LDA-Frames, NOAC) be-
cause of the input data size combined with the complexity of these algorithms. During
prototyping, we found that removing the triples containing pronouns from both the
input and the gold standard data set dramatically reduces the number of instances
without the change of ranks in the evaluation results. Thus, we decided to perform
our experiments on the whole data set without such a filtering.

In addition to the frame induction evaluation, where subjects, objects, and verbs
are evaluated together, we also used a data set of polysemous verb classes introduced
by Korhonen, Krymolowski, and Marx (2003) and used by Kawahara, Peterson, and
Palmer (2014). Statistics of both data sets are summarized in Table 14. Note that the
polysemous verb data set is rather small, whereas the FrameNet triples set is fairly large,
enabling reliable comparisons.

Input Data. In our evaluation, we use subject-verb-object triples from the DepCC data
set (Panchenko et al. 2018a),32 which is a dependency-parsed version of the Common
Crawl corpus, and the standard 300-dimensional Skip-Gram word embedding model
trained on Google News corpus (Mikolov et al. 2013). All the evaluated algorithms are
executed on the same set of triples, eliminating variations due to different corpora or
pre-processing.

5.2.2 Parameter Tuning. We tested various hyper-parameters of each of these algorithms
and report the best results overall per frame induction algorithm. We run 500 iterations
of the LDA-Frames model with the default parameters (Materna 2013). For HOSG by
Cotterell et al. (2017), we trained three vector arrays (for subjects, verbs, and objects) on
the 108,073 SVO triples from the FrameNet corpus, using the implementation provided
by the authors.33 Training was performed with 5 negative samples, 300-dimensional
vectors, and 10 epochs. We constructed an embedding of a triple by concatenating
embeddings for subjects, verbs, and objects, and clustered them using k-means with the
number of clusters set to 10,000 (this value provided the best performance). We tested
several configurations of the NOAC method by Egurnov, Ignatov, and Mephu Nguifo
(2017), varying the minimum density of the cluster: The density of 0.25 led to the best
results. For our Triframes method, we tried different values of k ∈ {5, 10, 30, 100}, while
the best results were obtained on k = 30 for both Triframes WATSET and CW. Both Triadic
baselines show the best results on k = 500.

32 https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/depcc.html.
33 https://github.com/azpoliak/skip-gram-tensor.

457

https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/depcc.html
https://github.com/azpoliak/skip-gram-tensor


Computational Linguistics Volume 45, Number 3

Table 15
Frame evaluation results on the triples from the FrameNet 1.7 corpus (Baker, Fillmore, and Lowe
1998). The results are sorted by descending order of the Frame F1-score. Best results are
boldfaced and statistically significant results are marked with an asterisk (∗). Simplified WATSET
is denoted as WATSET§.

Method Verb Subject Object Frame
nmPU niPU F1 nmPU niPU F1 nmPU niPU F1 nmPU niPU F1

Triframes WATSET[CWtop, CWtop] 42.84 88.35 57.70 54.22 81.40 65.09 53.04 83.25 64.80 55.19 60.81 57.87∗

Triframes WATSET§[CWtop, CWtop] 42.70 87.41 57.37 54.29 78.92 64.33 52.87 83.47 64.74 55.12 59.92 57.42∗
Triframes WATSET[MCL, MCL] 52.60 70.07 60.09 55.70 74.51 63.74 54.14 78.70 64.15 60.93 52.44 56.37∗
Triframes WATSET§[MCL, MCL] 55.13 69.58 61.51 55.10 76.02 63.89 54.27 78.48 64.17 60.56 52.16 56.05∗
HOSG (Cotterell et al. 2017) 44.41 68.43 53.86 52.84 74.53 61.83 54.73 74.05 62.94 55.74 50.45 52.96
NOAC (Egurnov et al. 2017) 20.73 88.38 33.58 57.00 80.11 66.61 57.32 81.13 67.18 44.01 63.21 51.89∗
Triadic Spectral 49.62 24.90 33.15 50.07 41.07 45.13 50.50 41.82 45.75 52.05 28.60 36.91∗
Triadic k-Means 63.87 23.16 33.99 63.15 38.20 47.60 63.98 37.43 47.23 63.64 24.11 34.97∗
LDA-Frames (Materna 2013) 26.11 66.92 37.56 17.28 83.26 28.62 20.80 90.33 33.81 18.80 71.17 29.75∗
Triframes CW 7.75 6.48 7.06 3.70 14.07 5.86 51.91 76.92 61.99 21.67 26.50 23.84

Singletons 0 18.03 0 0 20.56 0 0 17.35 0 81.44 15.50 26.04
Whole 7.35 100.0 13.70 5.62 97.40 10.63 4.24 98.01 8.14 5.07 98.75 9.65

5.2.3 Results and Discussion. We perform two experiments to evaluate our approach: (1)
a frame induction experiment on the FrameNet annotated corpus by Bauer, Fürstenau,
and Rambow (2012); (2) the polysemous verb clustering experiment on the data set
by Korhonen, Krymolowski, and Marx (2003). The first is based on the newly introduced
frame induction evaluation scheme (cf. Section 5.2.1). The second one evaluates the
quality of verb clusters only on a standard data set from prior work.

Frame Induction Experiment. In Table 15 and Figure 11, the results of the experiment are
presented. Triframes based on WATSET clustering outperformed the other methods on
both Verb F1 and overall Frame F1. The HOSG-based clustering proved to be the most
competitive baseline, yielding decent scores according to all four measures. The NOAC
approach captured the frame grouping of slot fillers well but failed to establish good
verb clusters. Note that NOAC and HOSG use only the graph of syntactic triples and
do not rely on pre-trained word embeddings. This suggests a high complementarity
of signals based on distributional similarity and global structure of the triple graph.
Finally, the simpler Triadic baselines relying on hard clustering algorithms showed
low performance, similar to that of LDA-Frames, justifying the more elaborate WATSET
method. Although we, due to computational reasons (Section 5.2.1), have statistically
evaluated only Frame F1 results, we found all the results except HOSG to be statistically
significant (p� 0.01).

Although triples are intuitively less ambiguous than words, still some frequent and
generic triples like (she, make, it) can act as hubs in the graph, making it difficult to
split it into semantically plausible clusters. The poor results of the CW hard clustering
algorithm illustrate this. Because the hubs are ambiguous (i.e., can belong to multiple
clusters), the use of the WATSET fuzzy clustering algorithm that splits the hubs by
disambiguating them leads to the best results (see Table 15). We found that on average,
WATSET tends to create smaller clusters than its closest competitors, HOSG and NOAC.
For instance, an average frame produced by Triframes WATSET[CWtop, CWtop] has
2.87± 4.60 subjects, 3.77± 16.31 verbs, and 3.27± 6.31 objects. NOAC produced on av-
erage 8.95± 15.05 subjects, 133.94± 227.60 verbs, and 15.17± 18.37 objects per frame.
HOSG produced on average 3.00± 4.20 subjects, 6.49± 12.15 verbs, and 2.81± 4.89
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Figure 11
F1-score values measured on the FrameNet Corpus (Bauer, Fürstenau, and Rambow 2012). Each
block corresponds to the top performance of the method in Table 15.

objects per frame. We conclude that WATSET was producing smaller clusters in general,
which appear to be meaningful yet insufficiently coarse-grained, according to the gold
standard verb data set used.

Verb Clustering Experiment. Table 16 presents the evaluation results on the second data
set for the best models identified in the first data set. The LDA-Frames yielded the best
results with our approach performing comparably in terms of the F1-score. We attribute
the low performance of the Triframes method based on CW clustering (Triframes CW)
to its hard partitioning output, whereas the evaluation data set contains fuzzy clusters.
The simplified version of WATSET has statistically significantly outperformed all other
approaches. Although the LDA-Frames algorithm showed a higher value of F1 than
the original version of WATSET in this experiment, we found that its sampled F1-score
is 44.98± 0.04, while Triframes WATSET[CWtop, CWtop] showed 47.88± 0.01. Thus, we
infer that our method has demonstrated non-significantly lower performance on this
verb clustering task. In turn, the NOAC approach showed significantly worse results
than both LDA-Frames and our approach (p � 0.01). Different rankings in Tables 15
and 16 also suggest that frame induction cannot simply be treated as verb clustering
and requires a separate task.

Manual Evaluation of the Induced Frames. In addition to the experiments based on gold
standard lexical resources, we also performed a manual evaluation. In particular, we
assessed the quality of the frames produced by the Triframes WATSET[CWtop, CWtop]
approach using n = 30 nearest neighbors for constructing a triple graph, which showed
the best performance during automatic evaluation (Tables 15 and 16).

To prepare the data for a manual annotation, we sampled 100 random frames and
manually annotated them with three different annotators. For the convenience of the
annotators, before drawing a sample we removed pronouns and prepositions from the
frame elements while keeping them containing at least two different lexical units. This
is to remove rather meaningful triples, for example, (her, make, it), which are, however,
present in large amounts in the FrameNet gold standard data set.
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Table 16
Evaluation results on the data set of polysemous verb classes by Korhonen, Krymolowski, and
Marx (2003). The results are sorted by the descending order of F1-score. Best results are
boldfaced and statistically significant results are marked with an asterisk (∗). Simplified WATSET
is denoted as WATSET§.

Method nmPU niPU F1

Triframes WATSET§[CWtop, CWtop] 41.21 62.82 49.77∗

LDA-Frames (Materna 2013) 52.60 45.84 48.98
Triframes WATSET[CWtop, CWtop] 40.05 62.09 48.69∗

NOAC (Egurnov et al. 2017) 36.43 63.68 46.35∗

Triframes WATSET[MCL, MCL] 39.26 54.92 45.78∗

Triframes WATSET§[MCL, MCL] 36.31 53.81 43.36∗

Triadic Spectral 45.70 38.96 42.06
HOSG (Cotterell et al. 2017) 38.22 43.76 40.80∗

Triadic k-means 46.76 28.92 35.74∗

Triframes CW 18.05 12.72 14.92

Whole 24.14 79.09 36.99
Singletons 0 27.21 0

#
12

68

Subjects: expert, scientist, lecturer, engineer, analyst
Verbs: study, examine, tell, detect, investigate, do, observe, hold, find, have,

predict, claim, notice, give, discover, explore, learn, monitor, check,
recognize, demand, look, call, engage, spot, inspect, ask

Objects: view, problem, gas, area, change, market

#
13

78

Subjects: leader, officer, khan, president, government, member, minister, chief,
chairman

Verbs: belong, run, head, spearhead, lead
Objects: party, people

#
42

11 Subjects: evidence, research, report, survey
Verbs: prove, reveal, tell, show, suggest, confirm, indicate, demonstrate
Objects: method, evidence

Figure 12
Examples of “good” frames produced by the Triframes WATSET[CWtop, CWtop] method as
labeled by our annotators; frame identifiers are present in the first column; pronouns and
prepositions are omitted.

In this study, annotators were instructed to annotate a frame as “good” if its el-
ements (SVO) generally make sense together and each element is a reasonable set of
lexical units. In total, the annotators judged 63 frames out of 100 to be good with a
Fleiss (1971) κ agreement of 0.816.34 Although this is a rather general definition, the high
agreement rate seems to suggest that it still provides a meaningful definition shared
across annotators. Figure 12 presents examples of “good” frames, that is, those which

34 We used the DKPro Agreement toolkit by Meyer et al. (2014) to compute the inter-annotator agreement.
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#
8

Subjects: wine, act, power
Verbs: hearten, bring, discourage, encumber, . . . 432 more verbs. . . , build,

chew, unsettle, snap
Objects: right, good, school, there, thousand

#
10

57 Subjects: parent, scientist, officer, event
Verbs: promise, pledge
Objects: parent, be, good, government, client, minister, people, coach

#
16

57 Subjects: people, doctor
Verbs: spell, steal, tell, say, know
Objects: egg, food, potato

Figure 13
Examples of “bad” frames produced by the Triframes WATSET[CWtop, CWtop] method as labeled
by our annotators; frame identifiers are present in the first column, pronouns and prepositions
are omitted.

are labeled as semantically plausible by our annotators. Figure 13 shows examples of
“bad” frames according to the same criteria. These frames are available for download.35

6. Application to Unsupervised Distributional Semantic Class Induction

In this section, we investigate the applicability of our graph clustering technique in an-
other unsupervised resource induction task. The first two experiments investigated the
acquisition of two linguistic symbolic structures from two different types of graphs—
namely, synsets induced from graphs of synonyms (Section 4) and semantic frames in-
duced from graphs of distributionally related syntactic triples (Section 5). In this section,
we show how WATSET can be used to induce a third type of structure, namely, semantic
classes from a graph of distributionally related words, also known as a distributional
thesaurus (or DT) (see Lin 1998; Biermann and Riedl 2013). In the context of this article,
semantic classes will be considered as semantically plausible groups of words or word
senses that have some common semantic feature.

The following sections will provide details of this experiment. In particular, Sec-
tion 6.1 presents two data sets that are used as gold standard clustering in the exper-
iments. Section 6.2 presents the input graphs that are clustered using our approach to
induce semantic structure. Finally, in Section 6.3 results of the experiments are presented
and discussed comparing them to the baseline clustering algorithms.

6.1 Semantic Classes in Lexical Semantic Resources

A semantic class is a set of words that share the same semantic feature (Kozareva, Riloff,
and Hovy 2008). Depending on the definition of the notion of the semantic feature,
the granularity and sizes of semantic classes may vary greatly. Examples of concrete
semantic classes include sets of animals (dog, cat, . . . ), vehicles (car, motorcycle, . . . ),
and fruit trees (apple tree, peach tree, . . . ). In this experiment, we use a gold standard
derived from a reference lexicographical database, namely, WordNet (Fellbaum 1998).

35 The examples are from the file triw2v-watset-n30-top-top-triples.txt is available in the
“Downloads” section of our GitHub repository at https://github.com/uhh-lt/triframes.
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Figure 14
A summary of the noun semantic classes in WordNet supersenses (Ciaramita and Johnson 2003).

This allows us to benchmark the ability of WATSET to reconstruct the semantic lexicon of
such a reliable reference resource that has been widely used in NLP for many decades.

6.1.1 WordNet Supersenses. The first data set used in our experiments consists of 26 broad
semantic classes, also known as supersenses in the literature (Ciaramita and Johnson
2003): person, communication, artifact, act, group, food, cognition, possession, location, sub-
stance, state, time, attribute, object, process, tops, phenomenon, event, quantity, motive, animal,
body, feeling, shape, plant, and relation.

This system of broad semantic categories was used by lexicographers who orig-
inally constructed WordNet to thematically order the synsets; Figure 14 shows the
distribution of the 82,115 noun synsets from WordNet 3.1 across the supersenses. In
our experiments in this section, these classes are used as gold standard clustering of
word senses as recorded in WordNet. One can observe a Zipfian-like power-law (Zipf
1949) distribution with a few clusters, such as artifact and person, accounting for a large
fraction of all nouns in the resource. Overall, in this experiment we decided to focus
on nouns, as the input distributional thesauri used in this experiment (as presented in
Section 6.2) are most studied for modeling of noun semantics (Panchenko et al. 2016b).

The WordNet supersenses were applied later also for word sense disambiguation
as a system of broad sense labels (Flekova and Gurevych 2016). For BabelNet, there is a
similar data set called BabelDomains (Camacho-Collados and Navigli 2017) produced
by automatically labeling BabelNet synsets with 32 different domains based on the
topics of Wikipedia featured articles. Despite the larger size, however, BabelDomains
provides only a silver standard (being semi-automatically created). We thus opt in
the following to use WordNet supersenses only, because they provide instead a gold
standard created by human experts.

6.1.2 Flat Cuts of the WordNet Taxonomy. The second type of semantic classes used in our
study are more semantically specific and defined as subtrees of WordNet at some fixed

462



Ustalov et al. WATSET: Local-Global Graph Clustering with Applications

Figure 15
Relationship between the number of semantic classes and path length from the
WordNet (Fellbaum 1998) root. We have chosen d ∈ {4, 5, 6} for our experiments.

path length of d steps from the root node. We used the following procedure to gather
these semantic classes.

First, we find a set of synsets that are located an exact distance of d edges from
the root node. Each such starting node (e.g., the synset plant material.n.01) identifies
one semantic class. This starting node and all its descendants (e.g., cork.n.01, coca.n.03,
ethyl alcohol.n.1, methylated spirit.n.01, and so on, in the case of the plant material example)
are included in the semantic class. Finally, we remove semantic classes that contain only
one element as our goal is to create a gold standard data set for clustering. Figure 15
illustrates distribution of the number of semantic classes as a function of the path length
from the root. As one may observe, the largest number of clusters is obtained for the
path length d of 7. In our experiments, we use three versions of these WordNet “taxon-
omy cuts,” which correspond to d ∈ {4, 5, 6}, because the cluster sizes generated at these
levels are already substantially larger than those from the supersense data set while
providing a complementary evaluation at different levels of granularities. Although at
some levels, such as d = 2, the number of semantic classes is similar to the number of
supersenses (Ciaramita and Johnson 2003), there is no one-to-one relationship between
them. As Richardson, Smeaton, and Murphy (1994) point out, this cut-based derivative
resource might bias toward the concepts belonging to shallow hierarchies: the node
for “horse” is 10 levels from the root, whereas the node for “cow” is 13 levels deep.
However, we believe that it adds an additional perspective to our evaluation while
keeping the interpretability at the same time. Examples of the extracted semantic classes
are presented in Table 17.

6.2 Construction of a Distributional Thesaurus

A distributional thesaurus (Lin 1998) is an undirected graph of semantically related
words, with edges such as {Python, Perl}. We base our approach on the distributional
hypothesis (Firth 1957; Turney and Pantel 2010; Clark 2015) to generate graphs of
semantically related words for this experiment. The graphs represent k nearest neigh-
boring of words that are semantically related to each other in a vector space. More
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Table 17
Examples of semantic classes extracted from WordNet hierarchy of synsets for the path length
d = 5 from the root synset.

Root Synset Child Synsets

rock.n.02 aphanite.n.01, caliche.n.02, claystone.n.01, dolomite.n.01,
emery stone.n.01, fieldstone.n.01, gravel.n.01, ballast.n.02,
bank gravel.n.01, shingle.n.02, greisen.n.01, igneous rock.n.01,
adesite.n.01, andesite.n.01, . . . 63 more entries. . . , tufa.n.01

toxin.n.01 animal toxin.n.01, venom.n.01, kokoi venom.n.01,
snake venom.n.01, anatoxin.n.01, botulin.n.01, cytotoxin.n.01,
enterotoxin.n.01, nephrotoxin.n.01, endotoxin.n.01, exotoxin.n.01,
. . . 19 more entries. . . , ricin.n.01

axis.n.01 coordinate axis.n.01, x-axis.n.01, y-axis.n.01, z-axis.n.01,
major axis.n.01, minor axis.n.01, optic axis.n.01, principal axis.n.01,
semimajor axis.n.01, semiminor axis.n.01

specifically, the dimensions of the vector space represent salient syntactic dependencies
of each word extracted using a dependency parser. For this, we use the JoBimText
framework for computation of count-based distributional models from raw text collec-
tions (Biemann and Riedl 2013).36 Although similar graphs could be derived also from
neural distributional models, such as Word2Vec (Mikolov et al. 2013), it was shown
in Riedl (2016) and Riedl and Biemann (2017) that the quality of syntactically-based
graphs is generally superior.

The JoBimText framework involves several steps. First, it takes an unlabeled input
text corpus and performs dependency parsing so as to extract features representing
each word. Each word is represented by a bag of syntactic dependencies such as
conj and(Ruby, ·) or prep in(code, ·), extracted from the dependencies of MaltParser
(Nivre, Hall, and Nilsson 2006), which are further collapsed using the tool by Ruppert
et al. (2015) in the notation of Stanford Dependencies (de Marneffe, MacCartney, and
Manning 2006).

Next, semantically related words are computed for each word in the input corpus.
Features of each word are weighted and ranked using the Local Mutual Information
measure (Evert 2005). Subsequently, these word representations are pruned, keeping
1,000 most salient features per word (fpw) and 1,000 most salient words per feature
(wpf), where fpw and wpf are the parameters specific to the JoBimText framework.
The pruning reduces computational complexity and noise. Finally, word similarities are
computed as the number of common features for two words. This is, again, followed
by a pruning step in which for every word, only the k of 200 most similar terms are
kept. The ensemble of all of these words is the distributional thesaurus, which is used
in the following experiments. Note that each word in such a thesaurus (i.e., a graph of
semantically related words) is potentially ambiguous.

36 http://www.jobimtext.org.
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Figure 16
An example of the lexical unit “java” and a part of its neighborhood in a distributional thesaurus.
This polysemous word is not disambiguated, so it acts as a hub between two different senses.

The last stage of the JoBimText approach performs induction of senses, although
here we do not use output of this stage, but instead apply the WATSET algorithm to the
distributional thesaurus with ambiguous word entries. The process of computation of
a distributional thesaurus using the JoBimText framework is described in greater detail
in Biemann et al. (2018, Section 4.1).

As an input corpus, we use a text collection of about 9.3 billion tokens that consists
of a concatenation of Wikipedia,37 ukWaC (Ferraresi et al. 2008), Gigaword (Graff and
Cieri 2003), and LCC (Richter et al. 2006) corpora. Given the large size of these corpora,
the graphs are built using an implementation of the JoBimText framework in Apache
Spark,38 which enables efficient distributed computation of large text collection on a
distributed computational cluster.39

Figure 16 shows an example from the obtained distributional thesaurus. As in the
experiments described in Sections 4 and 5, we assume that polysemous nodes serve as
hubs that connect different unrelated clusters.

6.3 Evaluation

We cast the semantic class induction problem as a task of clustering distributionally
related graphs of words and word senses, which is conceptually similar to our synset
induction task in Section 4. Figure 17 shows an example of the sense graph (Section 3.3)
built by WATSET before running a global clustering algorithm, which induces the sense-
aware semantic classes based on the distributional thesaurus example in Figure 16.

37 https://doi.org/10.5281/zenodo.229904.
38 https://spark.apache.org.
39 https://github.com/uhh-lt/josimtext.
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java11

java17

beer6

soap18
ruby24

delphi3

fortran2

c4
python6

pascal11

erlang6

eiffel13

cobol8

lisp6

coffee1

malt2cocoa8

tea3

cappuccino5

palm1

lemonade5

espresso2

Figure 17
An example of the sense graph built by WATSET for two senses of the lexical unit “java” using
CWlog for local clustering. In contrast to Figure 16, in this disambiguated distributional thesaurus
the node corresponding to the lexical unit “java” is split: java11 is connected to programming
languages and java17 is connected to drinks.

6.3.1 Experimental Set-Up. Similarly to our synset induction experiment (Section 4.2.1),
we study the performance of clustering algorithms by comparing the clustering of
the same input distributional thesaurus to a gold standard clustering. We used the
same implementations and algorithms as all other experiments reported in this paper,
such as MCL by van Dongen (2000), CW by Biemann (2006), and MaxMax (Hope and
Keller 2013a). We did not evaluate such algorithms as CPM (Palla et al. 2005) and
ECO (Gonçalo Oliveira and Gomes 2014) because of their poor performance shown on
the synset induction task.

Input Data. We use the distributional thesaurus as described in Section 6.2. Because the
original distributional thesaurus graph has approximately 600 million edges, we pruned
it by removing all the edges having the minimal weight (i.e., 0.001 in our case). Also,
because of the difference in lexicons between the gold standards and the input graph,
we performed additional pruning by removing all the edges connecting words missing
the gold standard lexicons. As a result, we obtained four different pruned input graphs
(Table 18). We performed no parameter tuning in this experiment, so we report the best-
performing configuration of each method among other ones.

Gold Standard. We use two different kinds of semantic classes for evaluation purposes.
Both of the semantic class types used are based on the WordNet lexical database

Table 18
Properties of the input data sets used in the semantic class induction experiment compared with
the original distributional thesaurus (DT) by Biemann and Riedl (2013).

DT Pruning Method # of nodes # of edges
Unpruned (Biemann and Riedl 2013) 4,430,170 595,916,414
Supersenses (Ciaramita 2003) 37,937 6,944,731
Path Length of d = 4 33,213 5,841,359
Path Length of d = 5 32,048 5,478,110
Path Length of d = 6 29,515 4,814,132
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(Fellbaum 1998) yet they have widely different granularities. First, we use the WordNet
supersenses data set by Ciaramita and Johnson (2003). Second, we use our path-based
gold standards of lengths 4, 5, and 6, as described in Section 6.1.

Quality Measure. In the synset induction experiment (Section 4.2.1) we use the pairwise
F1-score (Manandhar et al. 2010) as the performance indicator. However, because the
average size of a cluster in this experiment is much higher (Table 18 and Figure 14),
we found that the enumeration of 2-combinations of semantic class elements is not
computationally tractable in reasonable time on relatively large data sets like the ones
we use in this experiment. For example, a cluster of 10,000 elements needs to be
transformed into a sufficiently large set of 1

2 × 105 × (105 − 1) ≈ 5× 109 pairs, which
is inconvenient for processing. Therefore, we used the same quality measure as in
our unsupervised lexical semantic frame induction experiment (Section 5.2.1), namely,
normalized modified purity (nmPU), and normalized inverse purity (niPU), as defined
by Kawahara, Peterson, and Palmer (2014).

Statistical Testing. Because the chosen quality measure does not allow the computation
of a contingency table, we use exactly the same procedure for statistical testing as
in the experiment on lexical semantic frame induction (Section 5.2.1). Due to a high
computational complexity of the bootstrapping statistical testing procedure (Dror et al.
2018), we limited the number of samples N to 5, 000 in this experiment.

6.3.2 Results and Discussion.

Comparison to Baselines. Table 19 shows the evaluation results on the WordNet super-
senses data set. We found that our approach, WATSET[CWlin, CWlog], shows statistically
significantly better results with respect to F1-score (p� 0.01) than all the methods, apart
from Simplified WATSET in the same configuration. The experimental results in Table 20
obtained on different variations of our WordNet-based gold standard, as described in
Section 6.1, confirm a high performance of WATSET on all the evaluation data sets.
Thus, results of experiments on these four types of semantic classes of greatly variable
granularity (from 26 classes for the supersenses to 11,274 classes for the flat cut with
d = 6) lead to similar conclusions about the advantage of the WATSET approach, as
compared to the baseline clustering algorithms.

Table 21 shows examples of the obtained semantic classes of various sizes for the
best WATSET configuration on the WordNet supersenses data set. During error analysis

Table 19
Comparison of the graph clustering methods against the WordNet supersenses data set by
Ciaramita and Johnson (2003); best configurations of each method in terms of F1-scores are
shown. Results are sorted by F1-score; top values of each measure are boldfaced, and statistically
significant results are marked with an asterisk (∗). Simplified WATSET is denoted as WATSET§.

Method # clusters nmPU niPU F1
WATSET[CWlin, CWlog] 47,054 57.20 40.52 47.44
WATSET§[CWlin, CWlog] 47,797 58.16 39.86 47.30∗

CWlog 108 35.03 46.17 39.84∗

MCL 368 61.34 15.31 24.50∗
MaxMax 4, 050 68.48 4.15 7.82
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Table 20
Evaluation results on path-limited versions of WordNet by 4, 5, and 6; best configurations of each
method in terms of F1-scores are shown. Results are sorted by F1-score on the d = 6 WordNet
slice; top values of each measure are boldfaced. Simplified WATSET is denoted as WATSET§.

Method d = 4 d = 5 d = 6
nmPU niPU F1 nmPU niPU F1 nmPU niPU F1

WATSET§[CWlin, CWtop] 47.43 42.63 44.90 45.26 42.67 43.93 40.20 44.37 42.18
WATSET[CWlin, CWtop] 47.38 42.65 44.89 44.86 43.03 43.93 40.07 44.14 42.01
CWlin 34.09 40.98 37.22 34.92 40.65 37.57 31.84 41.89 36.18
CWlog 29.00 44.85 35.23 29.63 44.72 35.64 26.00 46.36 33.31
MCL 54.90 19.63 28.92 45.32 22.59 30.15 38.38 26.96 31.67
MaxMax 59.29 6.93 12.42 52.65 10.14 17.01 47.28 13.69 21.23

Table 21
Sample semantic classes induced by the WATSET[CWlin, CWlog] method, according to the
WordNet supersenses data set by Ciaramita and Johnson (2003).

Size Semantic Class
7 dye, switch-hitter, dimaggio, hitter, gwynn, three-hitter, muser

13 worm, octopus, pike, anguillidae, congridae, conger, anguilliformes, eel, ma-
rine, grouper, muraenidae, moray, elver

16 gothic, excelsior, roman, microgramma, stymie, dingbat, italic, century, trajan,
outline, twentieth, bodoni, serif, lydian, headline, goudy

20 nickel, steel, alloy, chrome, titanium, cent, farthing, cobalt, brass, denomina-
tion, fineness, paisa, copperware, dime, cupronickel, centavo, avo, threepence,
coin, centime

23 prochlorperazine, nicotine, tadalafil, billionth, ricin, pravastatin, multivita-
min, milligram, anticoagulation, carcinogen, microgram, niacin, l-dopa, low-
ering, arsenic, morphine, nevirapine, caffeine, ritonavir, aspirin, neostigmine,
rem, milliwatt

54 integer, calculus, theta, pyx, curvature, saturation, predicate, . . . 40 more words. . . ,
viscosity, brightness, variance, lattice, polynomial, rho, determinant

369 electronics, siren, dinky, banjo, luo, shawm, shaker, helicon, rhodes, conduct-
ing, . . . 349 more words. . . , narrator, paradiddle, clavichord, chord, consonance,
sextet, zither, cantor, viscera, axiom

1,093 egg, pinworm, forager, decidua, psittacus, chimera, coursing, silkworm,
spirochete, radicle, . . . 1073 more words. . . , earthworm, annelida, integument,
pisum, biter, wilt, heartwood, shellfish, swarm, cryptomonad
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we found two primary causes of errors: incorrectly identified edges and overly specific
sense contexts.

Because we performed only a minimal pruning of the input distributional the-
saurus, this contains many edges with low weights that typically represent mistakenly
recognized relationships between words. Such edges, when appearing between two
disjoint meaningful clusters, act as hubs, which WATSET puts in both clusters. For
example, a sense graph in Figure 17 has a node soap18 incorrectly connected to a drinks-
related node java17 instead of the node java11, which is more related to programming lan-
guages.40 Reliable distinction between “legitimate” polysemous nodes and incorrectly
placed hubs is a direction for future work.

The node sense induction approach of WATSET, as described in Section 2.2, takes
into account only the neighborhood of the target node, which is a first-order ego net-
work (Everett and Borgatti 2005). As we observe throughout all the experiments in this
article, WATSET tends to produce more fine-grained senses than one might expect. These
fine-grained senses, in turn, lead to the global clustering algorithm to include incoherent
nodes to clusters as in Table 21. We believe that taking into account additional features,
such as second-order ego networks, to induce coarse-grained senses could potentially
improve the overall performance of our algorithm (at a higher computational cost).

We found a generally poor performance of MCL in this experiment due to its
tendency to produce fine-grained clusters by isolating hubs from their neighborhoods.
Although this behavior improved the results on the synset induction task (Section 4.2.3),
our distributional thesaurus is a more complex resource as it expresses semantic rela-
tionships other than synonymity, so the incorrectly identified edges affect MCL as well
as WATSET.

Impact of Distributional Thesaurus Pruning on Ambiguity. In order to study the effect of
pruning, we performed another experiment on a DT that was pruned using a relatively
high edge weight threshold of 0.01, which is 10 times larger than the minimal threshold
we used in the experiment described in Section 6.3. A manual inspection of the pruned
graph showed that most, if not all, nodes were either monosemeous words or proper
nouns, so hard clustering algorithms should have an advantage in this scenario. Table 22
confirms that in this setup soft clustering algorithms, such as WATSET and MaxMax,
are clearly outperformed by hard clustering algorithms, which are more suitable for
processing monosemous word graphs. Because our algorithm explicitly performs node
sense induction to produce fine-grained clusters, we found that an average semantic
class produced by WATSET[CWtop, CWtop] has 10.77± 187.37 words, whereas CWlog
produced semantic classes of 133.46± 1, 317.97 words on average.

To summarize, in contrast with synonymy dictionaries, whose completeness and
availability are limited (Section 4.2.3), a distributional thesaurus can be constructed for
any language provided with a relatively large text corpus. However, we found that they
need to be carefully pruned to reduce the error rate of clustering algorithms (Panchenko
et al. 2018b).

40 Strictly speaking, SOAP (Simple Object Access Protocol) is not a programming language, so the presence
of this node in the graphs demonstrated in Figures 16 and 17 is a mistake.
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Table 22
Comparison of the graph clustering methods on the pruned DT with an edge threshold of 0.01
against the WordNet supersenses data set by Ciaramita and Johnson (2003); best configurations
of each method in terms of F1-scores are shown. Results are sorted by F1-score; top values of
each measure are boldfaced. Simplified WATSET is denoted as WATSET§.

Method # clusters nmPU niPU F1
CWlog 183 39.72 28.46 33.16
WATSET§[CWtop, CWtop] 3,944 57.22 20.21 29.87
WATSET[CWtop, CWtop] 3,954 57.38 19.91 29.56
MCL 526 65.12 8.46 14.98
MaxMax 3,761 72.71 2.00 3.88

7. Conclusion

In this article, we presented WATSET, a generic meta-algorithm for fuzzy graph clus-
tering. This algorithm creates an intermediate representation of the input graph that
naturally reflects the “ambiguity” of its nodes. Then, it uses hard clustering to dis-
cover clusters in this “disambiguated” intermediate graph. This enables straightforward
semantic-aware grouping of relevant objects together. We refer to WATSET as a meta-
algorithm because it does not perform graph clustering per se. Instead, it encapsulates
the existing clustering algorithms and builds a sense-aware representation of the input
graph, which we call a sense graph. Although we use the sense graph in this article
exclusively for clustering, we believe that it can be useful for more applications.

The experiments show that our algorithm performs fuzzy graph clustering with
a high accuracy. This is empirically confirmed by successfully applying WATSET to
complex language processing, including tasks like unsupervised induction of synsets
from a synonymy graph, semantic frames from dependency triples, as well as semantic
class induction from a distributional thesaurus. In all cases, the algorithm successfully
handled the ambiguity of underlying linguistic objects, yielding the state-of-the-art
results in the respective tasks. WATSET is computationally tractable and its local steps
can easily be run in parallel.

As future work we plan to apply WATSET to other types of linguistic networks to
address more natural language processing tasks, such as taxonomy induction based
on networks of noisy hypernyms extracted from text (Panchenko et al. 2016a). Addi-
tionally, an interesting future challenge is the development of a scalable graph cluster-
ing algorithm that can natively run in a parallel distributed manner (e.g., on a large
distributed computational cluster). The currently available algorithms, such as
MCL (van Dongen 2000) and CW (Biemann 2006), cannot be trivially implemented in
such a fully distributed environment, limiting the scale of language graph they can be
applied to. Another direction of future work is using WATSET in downstream applica-
tions. We believe that our algorithm can successfully detect structure in a wide range
of different linguistic and non-linguistic data sets, which can help in processing out-of-
vocabulary items or resource-poor languages or domains without explicit supervision.

Implementation. We offer an efficient open source multi-threaded implementation of
WATSET (Algorithm 1) in the Java programming language.41 It uses a thread pool

41 https://github.com/nlpub/watset-java.
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to simultaneously perform local steps, such as node sense induction (lines 1–9, one
word per thread) and context disambiguation (lines 11–15, one sense per thread). Our
implementation includes Simplified WATSET (Algorithm 2) and also features both a
command-line interface and an application programming interface for integration into
other graph and language processing pipelines in a generic way. Additionally, we
bundle with it our own implementations of Markov Clustering (van Dongen 2000),
Chinese Whispers (Biemann 2006), and MaxMax (Hope and Keller 2013a) algorithms.
Also, we offer an implementation of the Triframes frame induction approach42 and an
implementation of the semantic class induction approach.43 The data sets produced
during this study are available on Zenodo.44
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Martins, Nathan Schneider, and Noah A.
Smith. 2014. Frame-semantic parsing.
Computational Linguistics., 40(1):9–56.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia
Li, Kai Li, and Li Fei-Fei. 2009. ImageNet:
A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255,
Miami Beach, FL.

de Marneffe, Marie-Catherine, Bill
MacCartney, and Christopher D. Manning.
2006. Generating typed dependency parses
from phrase structure parses. In
Proceedings of the Fifth International
Conference on Language Resources and
Evaluation, pages 449–454, Genoa.

de Saussure, Ferdinand. 1916. Cours de
linguistique generate. Payot, Paris, France.

Di Marco, Antonio and Roberto Navigli.
2013. Clustering and diversifying Web
search results with graph-based word

472



Ustalov et al. WATSET: Local-Global Graph Clustering with Applications

sense induction. Computational Linguistics,
39(3):709–754.

Dikonov, Vyachelav G. 2013. Development of
lexical basis for the Universal Dictionary of
UNL Concepts. In Computational Linguistics
and Intellectual Technologies: Papers from the
Annual International Conference “Dialogue,”
volume 12(19), pages 212–221, Moscow.

van Dongen, Stijn. 2000. Graph Clustering by
Flow Simulation. Ph.D. thesis, University of
Utrecht.

Dorow, Beate and Dominic Widdows. 2003.
Discovering corpus-specific word senses.
In Proceedings of the Tenth Conference on
European Chapter of the Association for
Computational Linguistics - Volume 2,
pages 79–82, Budapest.

Dorow, Beate, Dominic Widdows, Katarina
Ling, Jean-Pierre Eckmann, Danilo Sergi,
and Elisha Moses. 2005. Using curvature
and Markov clustering in graphs for
lexical acquisition and word sense
discrimination. In Proceedings of the
MEANING-2005 Workshop, Trento.

Dror, Rotem, Gili Baumer, Segev Shlomov,
and Roi Reichart. 2018. The hitchhiker’s
guide to testing statistical significance in
natural language processing. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392, Melbourne.

Egurnov, Dmitry, Dmitry Ignatov, and
Engelbert Mephu Nguifo. 2017. Mining
triclusters of similar values in triadic
real-valued contexts. In 14th International
Conference on Formal Concept Analysis -
Supplementary Proceedings, pages 31–47,
Rennes.

Erk, Katrin and Sebastian Padó. 2006.
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Hallsteinsdóttir, and Chris Biemann. 2006.
Exploiting the Leipzig corpora collection.
In Proceedings of 5th Slovenian and 1st
International Language Technologies
Conference, Ljubljana. http://nl.ijs.si/
isjt06/proc/13_Richter.pdf

Riedl, Martin. 2016. Unsupervised Methods for
Learning and Using Semantics of Natural
Language. Ph.D. thesis, Technische
Universität Darmstadt.

Riedl, Martin and Chris Biemann. 2017.
There’s no ‘count or predict’ but
task-based selection for distributional
models. In Proceedings of the 12th
International Conference on Computational
Semantics — Short papers, pages 264–272,
Montpellier.

Ritter, Alan, Mausam, and Oren Etzioni.
2010. A latent Dirichlet allocation method
for selectional preferences. In Proceedings of
the 48th Annual Meeting of the Association for
Computational Linguistics, pages 424–434,
Uppsala.

Rong, Xin, Zhe Chen, Qiaozhu Mei, and
Eytan Adar. 2016. EgoSet: Exploiting word
Ego-networks and user-generated
ontology for multifaceted set expansion.
In Proceedings of the Ninth ACM
International Conference on Web Search and
Data Mining, pages 645–654, San Francisco,
CA.

Ruppert, Eugen, Jonas Klesy, Martin Riedl,
and Chris Biemann. 2015. Rule-based
dependency parse collapsing and
propagation for German and English. In
Proceedings of the International Conference of
the German Society for Computational

477

http://nl.ijs.si/isjt06/proc/13_Richter.pdf
http://nl.ijs.si/isjt06/proc/13_Richter.pdf


Computational Linguistics Volume 45, Number 3

Linguistics and Language Technology,
pages 58–66, Duisburg and Essen.

Salton, Gerard, Andrew Wong, and
Chungshu S. Yang. 1975. A vector
space model for automatic indexing.
Communications of the ACM,
18(11):613–620.

Sarmento, Luis, Valentin Jijkuon, Maarten
de Rijke, and Eugenio Oliveira. 2007.
“More like these”: Growing entity classes
from seeds. In Proceedings of the Sixteenth
ACM Conference on Information and
Knowledge Management, pages 959–962,
Lisbon.

Schaeffer, Satu Elisa. 2007. Graph clustering.
Computer Science Review, 1(1):27–64.

Schenk, Niko and Christian Chiarcos. 2016.
Unsupervised learning of prototypical
fillers for implicit semantic role labeling. In
Proceedings of the 2016 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human
Language Technologies, pages 1473–1479,
San Diego, CA.

Schütze, Hinrich. 1998. Automatic word
sense discrimination. Computational
Linguistics, 24(1):97–123.

Seabold, Skipper and Josef Perktold. 2010.
Statsmodels: Econometric and statistical
modeling with Python. In Proceedings of the
9th Python in Science Conference,
pages 57–61, Austin, TX.

Shen, Dan and Mirella Lapata. 2007. Using
semantic roles to improve question
answering. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational
Natural Language Learning, pages 12–21,
Prague.

Shen, Jiaming, Zeqiu Wu, Dongming Lei,
Jingbo Shang, Xiang Ren, and Jiawei Han.
2017. SetExpan: Corpus-based set
expansion via context feature selection and
rank ensemble. In Joint European Conference
on Machine Learning and Knowledge
Discovery in Databases, Proceedings, Part I,
pages 288–304, Skopje.

Shi, Jianbo and Jitendra Malik. 2000.
Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(8):888–905.

Steyvers, Mark and Joshua B. Tenenbaum.
2005. The large-scale structure of semantic
networks: Statistical analyses and a model
of semantic growth. Cognitive Science,
29(1):41–78.

Sundheim, Beth M. 1992. Overview of the
fourth message understanding evaluation
and conference. In Proceedings of the 4th

Conference on Message Understanding,
pages 3–21, McLean, VA.

Talukdar, Partha Pratim, Joseph Reisinger,
Marius Pasca, Deepak Ravichandran,
Rahul Bhagat, and Fernando Pereira. 2008.
Weakly-supervised acquisition of labeled
class instances using graph random walks.
In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language
Processing, pages 582–590, Honolulu, HI.

Thelen, Michael and Ellen Riloff. 2002. A
bootstrapping method for learning
semantic lexicons using extraction pattern
contexts. In Proceedings of the 2002
Conference on Empirical Methods in Natural
Language Processing, pages 214–221,
Pennsylvania, PA.

Thomason, Jesse and Raymond J. Mooney.
2017. Multi-modal word synset induction.
In Proceedings of the 26th International Joint
Conference on Artificial Intelligence,
pages 4116–4122, Melbourne.

Tian, Fei, Hanjun Dai, Jiang Bian, Bin Gao,
Rui Zhang, Enhong Chen, and Tie-Yan Liu.
2014. A probabilistic model for learning
multi-prototype word embeddings. In
Proceedings of COLING 2014, the 25th
International Conference on Computational
Linguistics: Technical Papers, pages 151–160,
Dublin.

Titov, Ivan and Alexandre Klementiev. 2011.
A Bayesian model for unsupervised
semantic parsing. In Proceedings of the 49th
Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies, pages 1445–1455, Portland, OR.

Titov, Ivan and Alexandre Klementiev. 2012.
A Bayesian approach to unsupervised
semantic role induction. In Proceedings of
the 13th Conference of the European Chapter of
the Association for Computational Linguistics,
pages 12–22, Avignon.

Tonelli, Sara and Daniele Pighin. 2009. New
features for FrameNet - WordNet mapping.
In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning,
pages 219–227, Boulder, CO.

Turney, Peter D. and Patrick Pantel. 2010.
From frequency to meaning: Vector space
models of semantics. Journal of Artificial
Intelligence Research, 37:141–188.

Ustalov, Dmitry, Mikhail Chernoskutov,
Chris Biemann, and Alexander Panchenko.
2017. Fighting with the sparsity of the
synonymy dictionaries for automatic
synset induction. In Analysis of Images,
Social Networks and Texts: 6th International
Conference, Revised Selected Papers,
pages 94–105, Moscow.

478



Ustalov et al. WATSET: Local-Global Graph Clustering with Applications

Ustalov, Dmitry and Alexander Panchenko.
2017. A tool for effective extraction of
synsets and semantic relations from
BabelNet. In Proceedings of the 2017 Siberian
Symposium on Data Science and Engineering,
pages 10–13, Novosibirsk.

Ustalov, Dmitry, Alexander Panchenko, and
Chris Biemann. 2017. Watset: Automatic
induction of synsets from a graph of
synonyms. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers),
pages 1579–1590, Vancouver.

Ustalov, Dmitry, Alexander Panchenko,
Andrei Kutuzov, Chris Biemann, and
Simone Paolo Ponzetto. 2018.
Unsupervised semantic frame induction
using triclustering. In Proceedings of the
56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers), pages 55–62, Melbourne.
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