@article{lawrence-reed-2019-argument,
title = "Argument Mining: A Survey",
author = "Lawrence, John and
Reed, Chris",
journal = "Computational Linguistics",
volume = "45",
number = "4",
month = dec,
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/J19-4006",
doi = "10.1162/coli_a_00364",
pages = "765--818",
abstract = "Argument mining is the automatic identification and extraction of the structure of inference and reasoning expressed as arguments presented in natural language. Understanding argumentative structure makes it possible to determine not only what positions people are adopting, but also why they hold the opinions they do, providing valuable insights in domains as diverse as financial market prediction and public relations. This survey explores the techniques that establish the foundations for argument mining, provides a review of recent advances in argument mining techniques, and discusses the challenges faced in automatically extracting a deeper understanding of reasoning expressed in language in general.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lawrence-reed-2019-argument">
<titleInfo>
<title>Argument Mining: A Survey</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Lawrence</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Reed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Argument mining is the automatic identification and extraction of the structure of inference and reasoning expressed as arguments presented in natural language. Understanding argumentative structure makes it possible to determine not only what positions people are adopting, but also why they hold the opinions they do, providing valuable insights in domains as diverse as financial market prediction and public relations. This survey explores the techniques that establish the foundations for argument mining, provides a review of recent advances in argument mining techniques, and discusses the challenges faced in automatically extracting a deeper understanding of reasoning expressed in language in general.</abstract>
<identifier type="citekey">lawrence-reed-2019-argument</identifier>
<identifier type="doi">10.1162/coli_a_00364</identifier>
<location>
<url>https://aclanthology.org/J19-4006</url>
</location>
<part>
<date>2019-12</date>
<detail type="volume"><number>45</number></detail>
<detail type="issue"><number>4</number></detail>
<extent unit="page">
<start>765</start>
<end>818</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Argument Mining: A Survey
%A Lawrence, John
%A Reed, Chris
%J Computational Linguistics
%D 2019
%8 December
%V 45
%N 4
%I MIT Press
%C Cambridge, MA
%F lawrence-reed-2019-argument
%X Argument mining is the automatic identification and extraction of the structure of inference and reasoning expressed as arguments presented in natural language. Understanding argumentative structure makes it possible to determine not only what positions people are adopting, but also why they hold the opinions they do, providing valuable insights in domains as diverse as financial market prediction and public relations. This survey explores the techniques that establish the foundations for argument mining, provides a review of recent advances in argument mining techniques, and discusses the challenges faced in automatically extracting a deeper understanding of reasoning expressed in language in general.
%R 10.1162/coli_a_00364
%U https://aclanthology.org/J19-4006
%U https://doi.org/10.1162/coli_a_00364
%P 765-818
Markdown (Informal)
[Argument Mining: A Survey](https://aclanthology.org/J19-4006) (Lawrence & Reed, CL 2019)
ACL