American Journal of Computational Linguistics Microfiche 33

PROCEEDINGS
13trn ANNUAL RMEETING

AssociATION FOR COMPUTATIONAL LINGUISTICS

2: LANGUAGE GENERATION SYSTEMS

Timothy C. Diller, Editor

Sperry-Univac
St. Paul, Minnesata 55101

Copyright @ 1975 by the Association for Computational Linguistics

PREFACE

The papers comprising this microfiche (the second of
five) present in expanded form (as submitted by their
authors) the six talks given in Session 2: Language Gene-
ration Systems. Various aspects of generation are consi-
dered, among them: relationsHips between parsing and
generation (Knaus), planning modules and data structures
basic to story development (Meehan), semantic networks and
linguistic generators (Shapiro and Slocum), message struc-
tures and translation strategies (Mc¢Donald), and lexical
processes in compound noun formation (Rhyne). Thanks to
Martin Kay for chairing this session.

Timothy C. Diller

Program Committee Chairman

TABLE OF CONTENTS

SESSION 2: LANGUAGE GENERATION SYSTEMS

A Framework for Writing Generation Grammars for Inter-

active Computer Programs David McDonald
Incremental Sentence Processing Rodger Knaus

A Lexical Process Model of Nominal Compounding in
English James R. Rhyne

t

Generation as Parsing from a Network into a Linear
String Stuart C. Shapiro

Speech Generation from Semantic Nets Jonathan Slocum

Using Planning Structures to Generate Stories James R.

Meehan

18

33

45
63

78

American Journal of Computational Linguistics wicroricne 33

A FRAMEWORK FOR WRITING GENERATION GRAMMARS FOR INTERACTIVE
CompUTER PROGRAMS

DAViID MCDONALD

Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

This paper outlines the stucture and operation of the
linguistic component from a language generation system in an
interactive program. The component receives messages
describing what is to be said formulated in the
representation of the main program and produces fluent
English utterances appropriate to the current discourse
situation. The component is data-directed and uses a
procedural grammar, organized as a set of strategles.

Interactive, speclalist programs presently under development will
need to produce fluent, intentional English utterances in responce to
particular, complex situatlions. This creates a requirement for language
generating facilities that Is not faced in transformational grammar,
mechanical translation programs, or paraphrase generating programs. As
a component of an interactive, speclalist program, the production of the
English must be driven directly by the communicative intentions of the
program and by the discourse situation.

We can imagine that the overall program consists of a number of
cooperating modules -~ for parsing and interpreting what 1s said to {t,

for solving problems in its domain, for managing its memory, and, in

: 4

particular, for generating utterances to communicate with its users.
This generation component can be profitably viewed as having three

aspects or "sub-components”.

1) Situation/domain specialists that are activated when the prograr

recognizes what situation it is in, They then decide what message
will be produced. They will decide what effect on the listener is
desired, and exactly what objects and relations are to be mentioned.
For example, an appointment scheduling program might be told to
*scrreQule a group meeting for Friday" and then find that a critical
member of the group is unavailable., The situation specialists in
the scheduling program are the ones to decide whether it is more
appropriate to simply say "I can't", or whether to volunter
information - "] can't; Mitch won't be back unt¢il Mondayr.

2) Models of the sudience and the discourse situation to use in

constructing utterances. There must be a record of the past
conversation to guide in the selection of pronouns,. Also, the
prograr must have models of, and heuristics about what the audience
already knows and therefore doesn't have to be told, This
information may be very specific and domain dependent. For example,
in chess, one can say "the white queen could take a knight". There
is no need to say "a black knight", because this information 1is
supplied by inferences from what one knows about chess - inferences

that the speaker assumes the listener shares.

3) Linguistic knowledge about how to construct understandable utterances

in the English language. Obviously, this information will include a
lexicon associating objects and relations from the main program with

strategies for realizing them in English (particular words, phrases,

syntactic constructions, etc.). There 1s also a tremendous amount
of information which describes the characteristics of the English
language and the conditions of its use. It specifies the allowable
arrangements of strategies and what modifications or alternatives to
them may be approprlate in particular circumstances.

Of the three aspects just described, my work has concentrated on

the third. What follows is drawn from my thesis (McDonald '75) and from

ongoing research.

The Linguistic Component
The linguistic knowledge required for generating utterances 1is put
into one component whose job is to take a message from the situation

speciallsts and construct a translatiog of that message in English. The

messages are In the representation used by the maln program and the
situation speclalists. The translation is done by a data-directed
process wherein the elements and structure of the message itself provide
the control.

The design of the linguistics component was arrived at independent
of any particular main program, for the simple reason that no programs
of adequate complexity were avallable at the time. However, at the
present time a grammar and lexicon is being developed to use with at
least two programs being developed by other people at MIT. They are an
appointment scheduling program (Goldstein '75) and an advisor to aild
users of MACSYMA (Genesereth '75). The short dialog below is an example
of the degree of fluency we are hoping to eventually achieve. The

dlalog is between a scheduling program acting as an appointment

secretary (P), and a student (5).

(5) 1 want to see Professor Winston sometime in the next few days.

(P) He's pretty busy all week. Can it wait?

(S) No, it can't. All I need is his signature on a form.

(P) Well, maybe he can squeeze you in tommorrow morning. Give me
your naee and check back in an hour.

Messages

Using the current message format and ignoring the detalls of the
scheduler's representation, the phrase "maybe he can squeeze you in
tommorrow™ could have come from a message like this one, put together by

one of the situation specialists.

Message-1 features= (prediction)
svent (event actor <«Winstom»

action <fit person-into full schedule>
time <31-10-75,9am-12am>)

hedge <{fs possible>

aim-at-audience hedge

Messages have features describing the program's communicative intentions
- what sort of utterance is this to be; what effect is it to have.
Messages 1ist the objects to be described (the right hand column) along
with annotations for each object (left hand column) to show how they
relate to the rest of the message. The phrases on the right in angle

brackets represent actual structures from the scheduler with those

meanings.

The Lexicon

Translation from the internal representaiton of a computer program
to natural language has the same sort of problems as translating between
two natural languages. The same concepts may not be available as
primitives in both representations, and the conventions of the target
language may require additional information that was not in the source.

Generally speaking transiation cannot be one for one.

What English phrase is best for a particular element in a program's
message will depend on what is in the rest. of the message and of what
the external contex't is. In such circumstances, translation by table-
lookup is inadequate., In this component, in order to allow all factors
to be consldered, the translation of each element i's done by

individualized procedures called "composers”.

For each main program that the linguistic component becomes
associated with, a4 lexicon must be created which will 1ist the elements
of the main program's representation that could appear in a message
(1.e. "prediction”, "event","<Winston>", etc.). With each element is
recorded the composer that will be run whenm the time comes to produce an
English description for it (examples will be given shortly). Some
composers may be applicable for a whole class of elements, such as
"events". They would know the structure that all events have in common
(e.g. actor, actlon, time) and would know how to interpret the

idiosyncratic details of each event by using data in the lexicon

assoclated with thenm.

The Grammar - strategies

The bulk of the grammar consists of "strategles". Strategies are
assoclated with particular languages rather than with particular main
programs as composers are. A given strategy may be used for several

different purposes. A typical case is the strategy use-simple-present-

tense: a clause in the simple present ("prices rise") may be understood

as future, conditional, or timeless, according to what other phrases are

present.

Each composer may know of several strategles, or comblnations of

strategies which it could use in describing an element from the message,
It will choose between them according to the context - usually details
of the element or syntactic constraints {mposed by previously selected
strategies. The strategies themselves do no reasoning; they are
implemented as functions which the composers call to do all the actual
construction of the utterance.

The Translation Process

At this point. the outline of the data-driven translation process
can be summarized, A message is given for translation. The elements of
the message are associated in a lexicon with procedures to describe
them. The procedures are run; they call grammatical strategies; and
the strategies construct the English utterance,

Of course, if this were all there was to it, the process would
never run, because all of the subprocesses must be throughly coordinated
{f they are not to "trip over their own feet", or, for that matter, if
ordinary human beings are to be able to design them. In a system where
the knowledge of what to do is distributed over & large number of
separate procedures, control structure assumes central importance,
Plans

Before describing the control structure, I must lay out some

additional aspects of the design of the linguistics component. Messages

are translated directly into English surface structure form, There is no

interlingua or intermedjate level of structure comparable to the deep
structures of Transformational Grammar, or the semantic nets of Simmons
(73) or Goldman (74).

Determining the appropriate surface structure, however, requires

planning, if for no other reason than that the message can only be

10

examined one plece at a time. The entire utterance must be otrganized
before a detalled analysis and translation can get underway. As this 1is
done, the "proto-utterance" is represented in terms of a sort of
scaffolding - a representation of the ultimate surface structure tree
insofar as its detalls are known with extensive annotation, explicit and
implicit, to point out where elements that are not yet described may be
positioned, and to implement the grammatical restrictions on possible
future detalls as dictated by what has already been done.

The scaffolding that 1s constructed in the translation of each
message ls called its "pian™. Plans are made up of syntactic nodes of
the usual sort - clauses, noun groups, etc. - and nodes may have
features in the manner of systemi: grammar (Winograd '72,. Nodes have
subplans consisting of a 1ist of named slots marking the possible
poslitions for sub-constituents, given in the order of the eventual
surface structure, Possible slots would be "subject™, "main verb"”,
"noun head", "pre-verb-adverb", and so on., The syntactic node types
will each have a number of possible plans, corresponding to the
different possible arrangements or sub-constituents that may occur with
the different combinations of features that the nbde may have.
Depending on the stage of the translation process, a slaot may be

"filled” with a pointer to an internal object from the message, a

syntactic node, a word or idiom, or nothing.

The translation process
The translation is done in two phases. The second phase does not
begin until the first is completely finished., During the first phase, a

plan is selected and the elements of the message are transferred,

11

largely untouched; to the slots of the plan and features added to its
nodes. During the second phase, the plan is "walked" topdown and from
left to right. Composdrs for message elements in the plan's slots are
activated to produce English descriptions for the elements as they are
reached in turh, Both processes are data-directed, the first by the
particular contents of the message and the second by the structure of
the plan and the contents of its slots.

There are sound linguistic reasons for this two stage processing.
Most parts of a message may be translated in terms of very modular
syntactic and lexical units. But other parts are translated in terms of
relations between such units, expressed usually by ordering or clause-
level syntactic mechanisms. The exact form of the smaller units cannot
be determined until their larger scale relations have been fixed.
Accordingly, the objective of the first phase is to determine what
global relatlionships are required and to choose the plan, features, and
positions of message elements within the plan's slots that will realize
those relationships. Once this has been done, English descriptions for
the elements can be made independent of each other and will not need to
be changed after they are initially created.

One of the most important features of natural language is the
ability to omit, pronominalize, or otherwise abbreviate elements in
certain contexts. The only known rules and huristics for using this
feature are phrased in terms of surface structure configurations and
temporal ordering. Because the second phase works directly in these

terms, stating and using the available heuristics becomes a

straightforward, tractable problen.

12

“Maybe he can squeeze you in tommorow morning"”
The rest of this paper will try to put some flesh on your picture
of how this linguistics component works by following the translation of

the message given in the beginning to the sentence above. The message

was this.

Message-1 features= (prediction)
event (event actor «<Winstom>

action <fit person into full schedule>
time <¢31-10-75, %am-12am>)

hedge <is possible>

aim-at-audience hedge

The intentional features of 4 message tend to require the most global
representation in the final utterance, because that is where indicators
for questions, special emphasis, specilal formats (e.g. comparison), and
the l1ike will be found. By convention then, the composers associated
with the intentions are given the job of arranging for the disposition
of all of the message elements. The total operatiocn of phase one
consists of executing the composer associated with each feature, one
after the other.

This message has only one feature, so its composer will assume al]
the work. The linguistics component is implemented in MACLISP, features
(and annotations and slots and nodes) are atoms, and composers are
functions on their property lists.

Prediction
composer-with (lambda ...)

Making a prediction is a speech act, and vwe may expect there to be
particular forms in a language for expressing them, for example, the use
of the explicit "will™ for the future tense. Knowledge of these would
pe part of the composer. Inside the malin program, or the situation

speclalist, the concept of a prediction may always include certain

13

parts: what is predicted, the time, any hedges, and so on. These part

are directly reflected in thc makeup of the elements present in the
message, and their annotations mark what internal roles they have,
There does not need to be a direct correspondence between these and the

parts in the linguistic forms used, the actual correspondence 1ls part of

the knowledge of the prediction composer,

Typically, for any fesature, one particular annotated element will
be of greatest importance in seting the character of the whole
utterance., For predictions, this is the "event", The prediction
composer chooses a plan for the utterance to fit the requirements of the
event-element. The realization of any other elements will be restricted
to be compatible with it.

The prediction composer does not need to know the element's
linguistic correlates itself, it can delegate the work to the composer
for the element itself. The element look like this.

(event actor <Winston»

action <fit person into full schedule>

time <«31-10-75, %am-12am>)
The first word points to the name of the composer, and the palirs glve
particular details. There is nothing special about the words used here
(actor, action, time), Jjust as long as the composer is designed to
expect the information in those places that the message-assembler wants
to put it. The event composer's strategy is to use a clause, and the
choice of plan is determined by the character of the event's "action".

The action is "<fit person into full schedulex", and it will have
two relevant properties in the lexicon: "plan", and "mapping". Plan is
either the name of a standard plan to be used; or an actual plan,

partially filled with words (i.e. it can be a phrase). "Mapping" is an

14

assoclation list showing how the subelements of the message are to be

transferred to the plan.

<fit person into full schedule>
PLAN

node-1i (clause transl particle)
slots frontings nil
subject nil

vg node-j (verb-group particle)
slots modal nil
pre-vb-adv nil
mvb "squeeze"
prt "in®
objectl <person being talked about>

post-modifiers nil
MAPPING

((actor subject)

(time post-modifiers))
The event composer proceeds to instanticte the nodes in the phrase and
make the transfers; the prediction composer then takes the resulting
plan, and makes it the plan of the whole utterance.

Two message elements remain, but actually there is only one,
because "aim-at-audience"™ is supplying additional information about the
hedge, The annotation means that the contents of the hedge (<is
possible>) are more something that we want to tell the audience than a
detail of the prediction. This will affect how the element 1is
positioned in the plan.

The prediction composer looks in the lexicon to see what
grammatical unit will be used to realize <is possible», and sees, let us
say, two possibilities involving different configurations of the adverb
"maybe" and the modal "can be able to", with the differences hinglng
on the placement of the adverb. Theoretically, adverbs can be
positioned in a number of places in a clause, depending on thelr
characteristics. In this instance, the choice 1s forced because of a

heuristic written into the grammar of adverbs and accessible to the

15

composer, that says that when the intent of an adverb i3 directed to the
audience, it should be in the first position (the "frontings” slot).
This choice implies putting "can" in the modal slot directly. The
alternative with "maybe" in the pre-vb-adv slot would have necessitated
a different form of the wodal, yielding "may be able to". These details
would have been taken care o7 by syntactic routines assoclated with the
verb group node.

All the message elerents have been placed and the first phase 1is

over. The plan is now as below.

node-1 (clause transl particle)
slots frontings "maybe"
subject «winston>

vg node-2 (verb-group particle)
slots modal "can"

pre-vb-adv nil
mvb "squeeze"
prt "in"
objectl «<person being talked about>
post-modifiers nil
The second phase controller is a simple dispaching function that moves
from slot to slot. "Frontings" contains a word, so the word is printed
directly (there is a trap for morphological adjustments when necessary).
"Subject" contains an internal object, so the controller should go to
the lexicon for its composer and then come back to handle whatever the
composer replaced the element with.

However, there is always an intervening step to check for the
possibility of pronominalizing. This check is made with the element
still in its internal form. The record of the discourse is given
directly in terms of the internal representation and test for prior

occurence can be as simple as identity checks against a reference list,

avoiding potentially intricate string matching operations with words.

16

In the dialog that this message came from, there 1is clear reference to
<winston>, so it can be pronominalized and "he" is printed.

Any slot, or any node type may have procedures associated with it
that are executed when the slot or node is reached during the second
phase. These procedures will handle syntactic processes like agreement,
rearangement of slots to realize features, add function words, watch
scope relatlionshlips, and 1In particular, position the particle in verb-
particle pairs.

Generally, particle position ("squeeze John in" vs. "squeze 1in
John") 1is not specified by the grammar - except when the object 1s a
pronoun and the particle must be displaced. This, of course, willl not
be known untill after the verb group has been passed. To deal wilth
this, a subroutine in the "when-entered" procedure of the verb group is
activated by the "particle"” procedure. First, it records the particle
and removes it from the VG plan so it will not be generated
automatically. A "hook" is available on any slot for a, procedure which
can be run after pronominalization is checked and before the composer 1is
called (if it is to be called). The subroutine incorporates the
particle into a standard procedure and places it on that hook for the
objectl slot. The procedure will check if the object has been printed
as a pronoun, and if so, prints out the particle (which 1s now in the
proper displaced positlion). If the object wasn't pronominalized, then
it does nothing, nothing has yet been printed beyond the verb group, and
other heuristics will be free to apply to choose the proper position.
Since <person belng talked about> is here equal to the student, the

person the program is talking with, 1t is realized as the pronoun "you"

and the particle is displaced.

17

Going from <¢31-10-75,9%am-12am> to "tomorrow morning™ may be little
more than table lookup by a "time" composer that has been designed to

know the formats of the time expressions inside the scheduler.

This presentation has had to be unfortunately short for the amount
of new material involved. A large number of interesting details and
questions about the processing have had to be omitted. At the roment
(September, 1975), the data and control structures mentioned have been
fully implemented and tests are underway on gedanken data. Hopefully,
by the end of 1975 the component will have a reasonable grammar and will
be working with messages and lexicons form the two programs mentioned
before. A MIT A.I. lab technical report describing this work in depth

should be ready in the spring of next year.

Abordy M- Decn00

David McDonald
Cambridge, Mass.

References cited in the text:

Genesi;eth, M. (1975) A MACSYMA Advisor. Project MAC, MIT, Cambridge,

ass.

Goldman, N. (1974) "Computer Generation of Natural Language from a Deep
Conceptual Base™. memo AIM-247, Stanford Artificial Intelligence
Lab., Stanford, Calift,.

Goldstein, 1. (1975) "Barganing Between Goals". ih the proceedings of
IJCAI-4, available from the MIT Al lab.

McDonald, D. (1975) The Design of a Program for Generating Nati.a:
Language. unpublished Master's Thesis, MIT Dept. of Electical
Engineering.

Simmons, R. (1973) "Semantic Networks: Thelir Computation and Use for
Understanding English Sentences". in Schank and Colby eds.
Computer Models of Thought and Language.

Wlnoggﬁd,leN<1972) Understanding Natural Language. Academic Press, New
ork, NY.

American Journal of Computational Linguistics microriche 33 : 18

INCREMENTAL SENTENCE PROCESSING

RODGER KNAUS
Systems Software Division
Social and Economic Statistics Administration

Bureau of the Census
Wwashington, D. C. 20233

A human whd learns a language can both parse and generate
sentences in the language. In contrast most artificial lan-
guage processors operate in one direction only or require
separate grammars for parsing and generation. This paper
describes a model for human language processing which uses

a single lanquage description for parsing and generation.
1. Choice of Parsing Strategy

A number of constraints 1imit the processors suitable as
models of human language processing. Because short term
memory is limited, the listener must absorb incoming words
into larger chunks as the sentence is heard. Also because
he is expected to reply within a couple seconds after the
speaker finishes, regardless of length of the speaker's
utterance, the listener must do much of the semantic proc-

essing of a sentence as he hears it.

19
Bever and Watt point out that the difficulty in under-

standing a sentence S is not predicted by the number of
transformations used to generate S. Furthermore the process
of detransformation appears too time-consuming (Petrick) for
the approximately two seconds before a listeaer is expected
to reply.

A depth first transition network parser (Woods, Kaplan),
in which parsing difficulty is measured by the number of arcs
traversed, correctly predicts the relative difficulty of
active and passive sentences progressive and adjectival present
participle sentences and the extreme difficulty of multiple
center embeddings. However a syntactically directed depth
first parser does not explain why syntactically similar
sentences such as

(5A) The horse sold at the fair escaped.

(5B) The horse raced past the barn fell.
vary in difficulty, nor does it explain experiments on the
completion and verification of ambiguous sentences (MacKay,
Olsen and MacKay) which suggest that a pruned breadth first
strategy is used to parse sentences. Sentences with two
equally plausible alternatives touk longer to process than
sentences wWith only one likely interpretation. This extra
processing time may be attributed to the construction of two
alternate interpretations over a longer portion of the sentence
when more than one interpretation is plausible,.

In addition subjects sometimes become confused by the two
interpretations of an ambiguous sentence. Finally in experi-
ments in which subjects hear an ambiguous sentence in ore ear
and a disimbiguating sentence simultaneously in the other ear
(Garrett) the interpretation of the ambiguity actually per-
ceived by the subject may be switched between the possibilities
by changing the disambiguating sentences.

21

Step 3 (a): (S ENP (N majl) (N Boxes))
V 1ike) (‘NP) (PP*))
(b): (S (NP (NP (N mail) (N Boxes))
(PP (PREP 1ike) NP) (PP*))
VINP) (PP*))
(c): (S (NP (N mail)) (Vv Boxes)
éPP (PREP 1ike) NP) (PP¥*))
(d): (S (V mail) (NP (N Boxes))
(PP (PREP 1ike) NP) (PP*))
(e): (S (V mail)
(NP (NP (N Boxes))
(PP (PREP 1like) NP) (PP*))
(PP*))

After completing the sentence after Step 4, the parser
produces phrase markers from a, ¢, d and e by adding the last
word and deleting unfilled optional nodés. The phrase marker
obtained from 4B is rejected because it contains an unfilled
obligatory V node.

The incremental parser adds each successive sentence word
to the partially completed phrase markers built from the earlier
part of the sentence. The new word is added at the leftmost oblig
unfilled node of each partial phrase marker and at all optional
nodes to the Teft of this node.

Three different operations are used to add a new word to
a partial parse. The word may be directly added to an unexpanded
node, as in Step 3a above. Alternatively, a new word may be

attached to an unfilled node with a Teft branching acyclic tree

built from the grammar such as (PP PREP NP) or (S (NP N (N*)) V
(NP) (PP*)). Attaching occurs in steps 1 and 3c.
Finally a subtreée of an existing partial phrase marker

may be Jeft embedded in a larger structure of the same gram-

matical category, as in steps 3b and 3e above. The embedding

operation uses at most two left branching trees built from the

22

grammar: a tree T1 with a single cycle on the 1éft branch is
used to replace the existing subtree E being embedded. In
step 3e, for example, the structure (S (V mail) (NP NP (PP*))
(PP*)) would be obtained. The E is used to expand the left-
most unexpanded node of T1§ for 3 b this results in:

3e. (S (V mail) (NP (NP (N Boxes) (N*)) PP*) (PP*)).
Finally to the resulting structure the new sentence word is
added through direct node expansion or attaching with an
acyclic left branching tree; in the example above this produces
3e from 3e.

Using direct expansion attaching and embedding, the
incremental parser finds all the phrase markers of sentences
in context free or regular expression language; a formal
definition of the parser and a proof of its correctness appear
in [10].

Sometimes, as at steps 3b and 3e, the same structure (a
prepositional phrase in step 2) is used in more than one partial
parse. Following Earley's Algorithm, the incremental parser
builds a single copy of the shared substructure SP and maintains
pointers linking SP to nodes in Targer structures which 5S¢
expands.

For all its tree building operations the incremental parser
uses a finite set of trees. i.e., the trees with only left sub-
nodes expanded and at most one:cycle on the leftmost branch.
These trees may be computed directly from the grammar and ref-

erenced by root and leftmost unexpanded node during the parse.

23

Using these precenstructed trees, the incremental parser requires
only a fixed number of operations to add a new word to a partial
parse: a retrieval on a doubly indexed set, copying the left
branching tree, and at most four structure changing operations
to paste words and trees together.

Like Earley's Algorithm, IP processes each word proportion-
ally to sentence length. However on sentences satisfying a depth

difference bound, the parsing time per word is constant. Because

humans can't remember large numbers of sentence words but must,
process speech at an approximately constant rate, a constant
parsing time per word i$s a necessary property of any algorithm
modeling human language processing.

Let the depth of constituent C in phrase marker P be
defined as the length of the path from the root of C to the root
of P. If T1 and T2 are two adjacent terminals with T1 preceding
T2, the depth difference from T1 to T2 is defined as the dif-
ference in dgpth between T1 and the root of the smallest tree
containing T1 and T2. For example in the phrase marker

(9) (S (NP iNP (DET the) (N telephone))
PP (PREP IN) (NP (DET the) (N room)))
(V rang) (ADV loudly))
the depth difference between "the" and "telephone™ is 1 and
between "room" and "rang" is 3.

The depth difference between T1 and T2 is the number of
nodes from T1 to the node expanded when adding T2 on a postorder
traversal from T1 in the partial phrase marker containing T1 but

not T2. The depth difference between T1 and T2 also represents

the number of constituents of which T1 is the rightmost wdrd.

24

A proof (requiring a formal definition of the incremental
parse) that parsing time per word is constant in depth difference
bounded sentences appears in [10]. Informally the depth dif-
ference bound places a bound both on the number of next nodes to
expand which may follow a given terminal and on the amount of
tree traversal which the parser must perform to find each next
uneéxpanded node. Since each modification requires only a fixed
number of operations, each of which is bounded on the finite set
of at most once cyclic left branching trees, the computation
adding a new word to existing partial parses is bounded inde
pendently of sentence length.

Natural language sentences tend to have small depth dif-
ferences. Both rijght branching sentences and left branching
sentences (found in Japanese for example) have an average depth
difference over each three or four word segment of two or less,.
On the other hand sentences are difficult to understand when
they have two consecutive large depth differences, suth as the
multiple center embedding

(10) The rat the cat the dog bit chased died.
or the complex noun phrase in
The pad on a clarinet in the tast row whichn 1|
fixed earlier for Eb fell out.
Furthermore in ambiguous sentences such as
(11) Joe figured that it was time to take the cat out.
Kimball observes that subjects prefer the reading with the
smaller depth difference. Finally, Blumenthal found that subjects

tended to understand a multiple center embedded sentence as a

25

conjunctive sentence. The conjunctive sentence contains a re-

arrangement. with lower depth differences of the constituents of

the center embedded sentence.

3. Sentence Generation

The syntactic form given to a sentence depends on the infor-
mation being communicated in a sentence and on the cultural con-
text in which the sentence appears. Clark and Haviland show that
a speaker uses various syntactic devices sentences to place the

"given" information known to the listener before the information

"new" to the listener. Particular syntactic structures are also

used to emphasize or suppress particular kinds of information;
for example newspaper traffic accident reports usually begin
with a passive sentence such as
(12) An elderly Lakewood man was injured when...,
presumably to emphasize the result of the
accident.
To capture the dependence of syntax on semantic content and

socijal context, the sentence generator uses function-like grammar

rules of the form

(Rulewame Cat Variables Predicate Forms).
Rulename 1is the name of the rule and c¢at is the grammatical
category of the constituent generated by the rule.

Variables is a 1ist of formal parameters. Usually the
variabTe 1ist contains a vartable bound during rule execution
to a node in a semantic network and another variable bound to

a control asseciation 1ist containing information about the con-

text in which the generated constituent will appear and possibly

26

the syntactic form the constituent should have.

Predicate is a Boelean-valued form on the parameters in
Variables. A rule is used only when Predicate is true.

Forms is a list of forms depending on Variables which
generate terminals or calls to the grammar for subconstituerits
of CAT.

An example of a generation rule is

(SPI S»(X Y) (Equal (Voice Y) (Quote Passive))

(NP (Object X) Y)

éBeverb X)

Pap (Action X))

(M* X Y))
which generates simple passive sentences. The variable X 1is
bound to a node in a semantic network and Y to a control
association 1ist. The rule is applied only if the control
alist contains a passive flag and if the semantic node has an
object and action; in general a rule is applied only if the
semantic subnodes called in the rule body appear in the
semantic net. The form (NP (Obj X) Y) generates a form (NP
X ¥YP), where X is the semantic node on the object indicator
from X, and Yp is the value of Y. Beverb and Pap are procedures
which generate respectively a form of the verb "to bé&" and a
past participle form of the verb Action(X). M* is a procedure
which generates a list depentiing on X and Y such as (PP<Value
of Time(X)> <Value of Y>) for generating optional prepositional
phrases or relative clauses.

As each rule is applied, the 1ist of terminals and calls to

grammar rules generated by the rule is added to a phrase marker

representing the structure of the sentence being generated.

27

Grammar calls in the phrase marker are expanded top down-and
left to right, in a preorder traversal of the growing phrase
marker. As terminals are generated they are printed out.

As an example, jllustrating the effect of semantic and
social contest on sentence generation, an initial sentence of
a traffic accident report,

(13). A man was killed when a car hit him in Irvine.

was generated from the semantic nodes

Al: Agent Ap A2: Agent Ap: Class magn
Object ve Action hit
Action Kill Object VO
Place Irvine Instrument Car
Cause AZ

and the control alist,

Purpose: Introduction;cases: object, cause, place
using a grammar built for generating traffic accident report
sentences. To summarize a trace of the generation, a call to
the sentence rule with purpose = introduction generates a sentence
call with voice = passive. The passive rule applies and a noun
phrase on A@ is called for. Because Purpose = Introduction a
NP rule applies which calls for a NP to be generated on the
semantic class to which A@ belongs. Because CASES contains
TIME and CAUSE, the passive rule generated calls far modifying
structures of these CASEs. Because the cause semantic node A?
has an action, the modifier rule M => Relative conjunction S
generates the cause while the time is described by a preposi-
tional phrase. The pronoun "him" is generated by a noun phrase
rule NP-1 which generates a pronoun when the first semantic

argument to the left of the NP-1 call in the generation phrase

28

marker which is described by the same pronoun as the semantic

argument A of NF-1 is in fact equal to A.
4, Finding Semantic Preimages

While the generator described in section 3 produces sentences
from semantic and contextual information, the incremental parser
described in section 2 recovers merely the syntactic structure
of a sentence. To obtain the semantic arguments from which a
sentence might have been generated a procedure to invert the
generation rule forms must be added to the incremented parser.

While the incremental parser begins the construction of con-
stituents top down, it completes them syntactically in a bottom
up direction. In fact IP executes postorder traversals on all
the syntactic parse trees it builds; of course if a particular
partial phrase marker can not be finished, the traversal is not
completed. However each node not a tree terminal of a syntactic
phrase marker visited by the incremental parser is a syntactically
complete constituent.

When the parser visits a syntactically complete constituent
C, it applies a function INVERT to find the semantic preimages
of C. In finding the semantic structure of C, INVERT has avail-
able not only the syntactic structure of C, but also the semantic
preimages which it found for subcenstituents of C. ‘INVERT finds
the set of generation rules which might profuce a constituent
having the same syntactic form as C. For each such rule R,
INVERT constructs all the possible parings between each output-

generating form F of R and the constituents of C which F might

29

produce. For example if C is
(S (NP Man) (Beverb is) (PAP Injured))

the pairing established for the passive sentence rule would be

(NP (Object X) Y) (NP the man)
(Beverb X) (Beverb 1is)
(Pap {Action X)) (Pap Injured)
(M* X Y) NIL

The pair ((Equal (Voice Y) PASSIVE) T) is also created, since
the rule predicate is true whenever a rule applies.

Each indicidual pair P in such a pairing of a rule form and
rule form outputs is processed by a function FIND which returns
an association 1ist containing possible values of the rule
parameters (X and Y in the example above) which would produce

the output appearing in P. For the example above FIND would

produce
(g X ((Object Man);; zY NIL))
((X ((Time Past) Y NIL))
((X NIL) (Y ((Cases Nil)))).
((X NIL) (Y ((Voice Passive))))

Using an extension to association lists of the computational
logic Unification Algorithm, these association 1ists are unified
into a single association list, which for the example is

({ X ((Agent man) (Time Past) (Action Injure))
((¥ ((Cases Nil) (Voice Passive))))

Finally INVERT creates a grammar rule call,

(S ((Agent man)(Time Past)(Action Injure))
((Cases Nil)(Voice Passive))))

from the association 1list and stores the result in the inverse
image of C.

In finding a semantic preimage, the INVERT function must

20
know which grammar rules might produce a particular grammatical
constituent. This information is computed by symbolically eval-
uating the grammar rules to produce the strings of regular
expression grammar nonterminals (as opposed to grammar calls)
representing the possible output of each rule. The resulting
relation from rules to strings is inverted into a table giving
possible rules generating each string.

The heart of this symbolic evaluator is a function ETERM on
the output generating forms of a rule which returns a Tist all
lTists of regular expression nonterminals representing the out-
put of a form. ETERM takes advantage of the similar syntax of
most grammar rule forms, and is defined in simplified form
(with comments in angle brackets) as

Eterm (form) =
if atom (form) then NIL
<terminates recursion>
else if car (form) is a grammatical category
then list (1ist (car (form))))
<these forms generate a single grammar call>
else if car (form) = FUNCTION ar LAMBDA
then ETERM (cadr (form))
else if car (form) = LAMBDA
then ETERM (caddr (form))
else if car {(form) = LIST
if form is not properly contained in a LIST
expression
then Mapcar((Function Concatenate)
(Cartesian
((Mapcar (Function ETERM)
cdr (form))))
<outer LISTS are used to create lists of grammar callss>
else if form is inside a LIST expression
ETERM (cadr (form))
<inner lists are used to create grammatically>
else if car (form) = MAPCONC then make optional
and repeatable all the nonterminals returned
in ETERM ([function argument of MAPCONC])

31

else if car (form) = COND
then MAPCONC((LAMBDA(X) ETERM ([1ast form in X])
(cdr form)
<returns alternatives from each branch of the COND>
else if car (form) is a user-defined function
then ETERM ([definition of function])

else if there is a stored value for ETERM (form)
then that value

else ask the the user for help
The function FIND which returns possible bindings for rule
variables when given a rule form and its output is defined below.
The variable ALIST holds the value of the association list being

hypothesized by FIND; this variable is NIL when FIND is called
from INVERT.

Like ETERM, the definition of FIND is based on the rules

for evaluating recursive functions.

FIND (Alist form value)=
if eval(form alist)=valué then Jist (Alist)
else if recursion depth exceeded, then NIL
else if atom (form) then 1ist (Merge (list (cons
(form Value)) Alist)
else if car (form)= COND
let L = clauses which might be entered by
evaluating form
then Mapconc (FM 1) where
FM (clause) = 1ist (Merge Find (Alist Car (clause)T)
Find (Atlist last (clause)))
else if car (form) = Quote then if cadr (form) = value
then Alist else NIL
else if car (form) is a defined function
then FIND (Alist (Substitute cdr (form) for
formal parameters im definition
of car (form))
Value)
else if car (form) = MAPCONC (fn 1st)
then Merge (Find (Alist 1st value)
For each X in 1st, Merge (Alist for X))
<this clause makes the assumption, which works in

practice, that fn generates either one-element
or empty lists>
else NIL

ol tmed cnd ad w——d cad

32

With a definition of FIND similar to the one above, the
parser found the preimage

(8 (((place ((class (park))
(agent ((class (man)))
(action (walked]

[the extra parentheses denote lists of alternatives] for the
sentence

(13) The man walked in the park.
generated by the grammar '

))
)

[SP S (X) T (NP (Agent X)) (V(Action X))

(Optional g(PP (Place X) ((Case Place]
[NPP NP (X) T (Det X) (N (Class X
[PPP PP (XY) T (Prep XY) (NPX]

and the preposition function

Prep (XY) = Selectq (Assoc CASE Y)
(Place IN)
(Instrument WITH)
(Source FROM]

5. Implementation

The processors described in this paper have been programmed

in University of California, Irvine, LISP and run in about 45K on
a PDP-10 computer.

References

Bever, Thomas G. 1970. 1In [7] and [5].

Clark, Herbert H. and Haviland, Susan E. 1975 Social Sciences
Working Paper, 67. U.C. Irvine.

Colby, Benjamin N. 1973. American Anthropologist 75, 645-62.
Florres d'Arcaio and lLevalt, eds. 1970 Advances in Psycholin-
guistics, North Holland, Amsterdam.

Garrett, Merrill, F. 1970. in [5].

Haynes, John R. 1970. Cognition and the Development of lLanguage.

John Wiley.
E?pga?i Rgn:ld]M.4 1972. A.I1. 3, 77-100

mball, John 1974. Cognition 2,1,15-47.
Knaus, Rodger. 1975. Ph.D Thesis. U.C. Irvine.
MacKay, Donald G. 1966. Perception and Psychophysics. 426-36.
Olson, James N. and MacKay, Donald G. JVLVB 13, 45770.
Petrick, S. R. In [14].
Rustin, Randall. 1973. Natural Lanquage Processing.
Watt, Wm. 1970. 1In [7].
Woods, Wm. 1973. In [14].

» -

NMPWN=OWON (= N8} & W N =~

American Journal of Computational Linguistics wmicrofiche 33 : 33

A LexicaL Process MopeL oF NoMINAL COMPOUNDING IN FNGLISH

JAMES R. RHYNE

Department of Computer Science
University of Houston
Houston, Texas 77004

ABSTRACT

A theoretical model for nominal compound formation in English
is presented in which the rules are representations of lexical
processes. It is argued that such rules can be generalized to
account for many nominal compounds with similar structure and
to enable new compounds to be produced and understood. It is
shown that nominal compounding depends crucially on the existence
of a "characteristic" relationship between a nominal and the
verb which occurs in a relative clause paraphrase of a compound
which contains the nominal. A computer implementation of the
model is presented and the problems of binding and rule selection
are discussed,

34
Linguistic Issues.

Nominal compounds are sequences of two or more nominals
which have the semantic effect of noun phrases with attached
relative clauses. The rightmost nominal is generally the primary
referent of the compound the other nominals restrict the
reference of the rightmost nominal in much the same fashion that
a relative clause does. There are, of course, exceptions in
which the rightmost nominal is figurative or euphemistic
(e.g. family jewels). Compounds occur frequently in English and
Germanic languages, but infrequently in the Romance languages
where their function is largely performed by nominal-preposition-
nominal sequences (e.g. chemin de fer, agent de change).

The syntactic structure of nominal compounds is quite simple
--the three variants are N-N, N-participle-N, and N-gerund-N.

In the N-N form, either of the two nominals may in fact be yet
another nominal compound, giving a structure like (N-N)-N or
N- (N-N); the first of these forms seems to occur much more often

than the second (examples of each type are: typewrite: mechanic,
liquid roach'gpison).

I assume that the process of nominal compounding is syntac-
tically a process in which a relative clause is reduced by delet-
ing all elements of the relative clause but one and preposing the
single remaining element ir front of the antecedent nominal. In
addition, the clause verb may be nominalized .nd preposed. Other
linguists have proposed different derivations for nominal
compounds; Lees [3], for example, derives nominal compounds from
nominal-preposition-nominal sequences. There are two reasons why
I feel that Lees approach is wrong: (1) there are English
compounds for which no reasonable equivalent nominal-preposition-
nominal paraphrase can be given (e.g. windmill), and (2) there
are subtle meaning differences between the nominal compounds and
their nominal-preposition-nominal counterparts (county clerk vs.
clerk for the county). If nominal compounds and nominal-
preposition-nominal sequences are derived from forms like

relative clauses, then the differences in meaning can be accounted

35

for by deriving each form from a distinct relative clause; the
relative clauses may, of course, be quite closely related to
each other.

I have spoken rather loosely about deriving nominal compounds
from relative clauses; I am not proposing a derivation system
which operates on surface forms of the language, and what I
intend that the reader should understand is that an underlying
form for a nominal compound is derived from an underlying form
for a relative clause by a language process which I term a
lexical ruleée because, as we shall see, the operation of such
rules depends crucially on the specific lexical items which are
present in the underlying structures. Linguists have identified
a number of lexical processes in English; some examples of such
processes may be found in [1] and [2].

The underlying forms associated with relative clauses and
nominal compounds in the model of nominal compounding being
preésented here are networks (trees for the most part) defined
in terms of a case grammar which is closely related to that
used by Simmong [5]. The cases which appear in this swystem fall
into two gemeral categories: (1) cases of the clause verb, which
are the following -- Performer, Object, Goal, Source, Location,
Means, Cause, and Enabler -- and (2) structural cases, which are
REICL (relative clause) and COMP (compound). I will not explain
these cases in detail, as that is the subject of a forthcoming
paper. But the following observations will illuminate the case
system for verb cases. The case system distinguishes the
immediate performer of an act from a remote cause or agent of
the act. The reason for this distinction lies in an intimate
connection between verbs and the assumed or habitual performer
of the act which is the reference of the verb. The case sSystem
also distinguishes an active causative agent of an act from
an agent which merely permits the act to occur; this distinction
in the case system permits two classes of verbs to be distinguished

according to whether the surface subject commonly causes the act
or permits the act to occur.

36

The case system used in the present model of nominal
compounding is not a deep case system; on the contrary, it seems
that nominal compounding is a lexical process which occurs
rather near the surface in a derivatidnal grammar model. An
example which can be given to support this is the compound
ignition key; this is a key ‘'which turns a switch which enables
a complex sequence of events to take place that ultimately result
in the ignition of a fuel/air mixture in an engine, &r one may
describe it equivalently as a key which causes ignition. The
first description corresponds to a deep case level of description
while the second corresponds to the level at which the compound
ignition key is formed. I would argue that if cne takes the
deep case approach, then one is forced to include a great deal
of structure in the rules for nominal compounding; in particular,
the rule for ignition key must remove all of the links in the
causal chain leading to the ignition act. The deletion of this
intermédiate information must be done to obtain the description
given in the second case, and to include the deletion procedure
in both a compounding rule and in the rule process which leads
to the shorter description means unnecessarily duplicating the

procedure. Moreover, if one derives compounds from paradigm
relative clauses of the second sort, e.g. key whieh causes an
action to occur, then it is possible to generalize compound
forming rules so that a single rule may produce several
compounds, It will not be possible to do this if deep cases are

used as the deep case structure 0f firing key will be quite
different from that of ignition key.

In order to understand the model of compounding which is
being presented here, it is essential to consider the function
of compounding in language. 1In my view, compounding is a process
which allows a speaker to systematicdlly delete information from
an utterance just when the speaker has reason to expeet that the
hearer can reconstruct that information. 1In effect, I consider
compounding {(and a great many other linguistic processes) to be
examples of linguistic encoding which are used to speed up

37

communication, and the grammar shared by the speaker and hearer
must include the encoding and decoding functions.

Consider the nominal compound steam distillation, which
refers to the distillation of some substance with steam; the
hearer of the compound steam distillation knows that distillation
is the derived nominal form of distill. The hearer also knows
what the common or characteristic cases of the verb distill are:
the agent is invariably a person or machine (this would be the
occupant of the Cause case slot in my system), +the instrument
(or Means) may be an apparatus or a heated medium such as steam
and the Goal is a liquid which is missing seme of the constituents
that it entered the distillation process with.

It happens that in English, whenever a derived nominal of an
act is the right element in a compound, then the left element is
almbst always an occupant of one of the case slots of the verb.

In order to recreate the underlying relative clause structure, it
is only necessary for the hearer to properly choose the case for
the nominal steam. A great deal of lexical information can be
brought to bear on this question; for example, steam is not a
liquid, it is water vapor and thus it cannot be the starting
substance or the end product of a distillation process. Steam
might be the Cause of the act of distillation except that there

do not seem to be any compounds in English which have distillation
as the right element and a Cause as the left element. Thus the
hearer can assign steam to the Means case with some assurance.

In another example, shrimp boat, the hearer can ascertain
by lexical relations involving the word boat, that boats are
characteristically used to catch marine life. One choice Eor the
main verb in a synonymous relative clause is catch, which will
have boat as an element of the Means case. The Cause for catch
is commonly a person or perhaps a sophisticated machine designed
to catch things (i.e. a trap). The Object. is characteristically
an animal. There is a strong characteristic relation between
the animal being caught and the means used to catch it, for example
mink is trapped, calves are roped, birds are netted, and fish are
caught with a boat. This relation exists as a rule in the lexicon

38

of both the speaker and the hearer and it enables the speaker to
produce the nominal compound and the hearer to understand it.
Furthermore, shrimp boat is one member of a class of
closely related nominal compounds which includes lobster boat,
whale boat, tuna boat amd many others. It would be most
interesting if a single rule could be formulated which would
generate all of these compounds. A lobster boat is a boat
which is used to catch lobster, a tuna boat is a boat which is
used to catch tuna, and so forth. All of these examples are
identical except for the particular marine animal being caught.
The logical next step is the creation of a rule which generalizes
the individual marine animals to the common category of marine
animal. This rule will state that a marine animal boat is a boat
which is used to catch marine animals,

In making this generalization, I have given the rule the
power to help interpret novel compounds and to generate then,
With this power comes a difficulty, which is constraining the
rule so that it does not generate bad compounds or produce
incorrect interpretations. The key to this constraint lies
in what I will term the characteristic or habitual aspect of
nominal compounds. In the case of the boat compounds, a boat
will only be a shrimp boat if it is characteristically, usually,
habitually or invariably used to catch shrimp. So the operation
of a compounding rule is enabled only if a characteristiec aspect
is associated with the verb; in English, this is usually indicated
by an adverb or an adverbial phrase. If the speaker is willing
to assert that a boat is characteristically used to catch turtles,
then the nominal compound turtle boat may be used. The hearer
will use the general rule to place turtle and boat in the proper
case slots, and because a compound was used by the speaker, the

hearer will infer that the boat is one which is characteristically
used to catch turtles.

There are other problems which arise with the generalization
of rules; for example, compounding never produces a compound in
which the leit element is a proper noun, unless the proper noun
is the name of a process (e.g. Markov grocess) or is a Source,

39

Performer, or Goal of an act of giving. It also seems to be true
that compounds are not generally formed when a lexical item is
several levels below the genéral term which appears in the rule
(e.g. repairmidget) or when a cross-classificatory term is used
(e.g. automobile Indian as an Indian who repairs automobiles).
With all of the preceding discussion in mind, I would now like to

turn to the model of nominal compounding which I have presently
implemented and running.

The Computer Model

The computer model of compounding accepts relative clause
structures as input and produces nominal compound structures as
output when the input is appropriate. It is written in a language
with many parentheses the language was chosen for its program
development facilities, i.e. built-in editor, rather than for its
interpretive capabilities. The program which produces nominal
compounds is a pattern matching interpreter; it applies a rule
of compound formation by matching one side of the rule with the
input structure, and if certain criteria are satisfied by the
match, items from the input structure are bound into the rule,
transferred to the other side of the rule, and a copy is then
mage cf the other side of the rule. The result is a nominal
compound structure.

The model has two components: a rule interpreter and a
lexicon of rules for compounding. There is nothing tricky
about rule application. Consider the nominal compound flower
market and its associated relative clause paraphrase market
where flowers are characteristically sold. These phrases have

in my system the underlying structures shown in Figure 1.
The notation in square braces means that the verb sell has the
characteristic aspect in this instance.

market market
RELCL CoMP
sell [+char] flower
LOC \\\\QPJ
market flowers

Figure 1.

40

These two structures can be made into a rule by linking them
together. Whenever a relative clause structure identical to
that in Figure 1 is received, the rule applies and a copy is
created of the nominal compound flower market. The matching

procedure is a relatively straightforward, top down, recursive
process which has backtracking capability in the event that

a structure or case occurs more than once at any given level of
the structure. There are two problems which arise; however:

if the rule is generalized to account for compounds other than
flower market, then the lexical items in the rule will behave as
variables and some provisions must be made for binding of values
to these variables; also, the rule interpreter must have some
heuristics for selecting appropriate rules if the time required

to produce a compound is not to increase exponentially with the
size of the lexicon.

The present version of the model only partly solves the
binding problem. Consider the rule given in Figure 2 which is a
generalization of that given in Figure 1.

market market
RELCL , COMP
sell [+char]
LOC,//// OBJ
market goods

goods

Figure 2.

If this rule is to apply to the relative cirause structure given in
Figure 1 and generate the compound flower market, then the rule
interpreter must recognize that the relative clause in Figure 1

is an instance of that given in Figure 2. The matching procedure
does this by determining that the reference set of the nominal
flowers is a subset of the reference set of the nominal goods.

In addition, the nominal flowers must be carried across to
the other side of the rule and substituted there for goods before
the other side of the rule is copied. Thus market and goods must
be bound across the rule so that whatever lexical item matches

either of these nominals becomes the value associated with these

41

nominals on the other side of the rule.

In the initial version of the model, this binding was
established explicitly when the rule was entered into the lexicon,
but this seemed unsatisfactorily ad hoc. 1In a subsequent version,
the identity of the lexical items on both sides of the rule was

the relation used to establish binding relationships. Consider,
however, the structure shown in Flgure 3.

person thief
RELCL comp
steal [+char] valuables
PERF OBJ

person valuables
Figure 3

Here person should be bound to thief but the previous technique
is not able to establish this binding. The reason that we know
that person and thief should be bound is because we know that a
thief is a person who steals characteristically. In the most
recent version of the model, this information is used to find the
binding relationships when the rule of identity does not work.
The lexicon is searched for a rule which can be used to establish
this binding. The rule which is used in the example shown in
Figure 3 is displayed below in Figure 4.

person thief
RELCL

steal [+char]
PERF

person

Figure 4

From the structures given in Figure 4, one can see that person
shéuld be bound to thief because the rule states that the reference

set of thief is the same as the reference set of person as
restricted by the relative clause.

The technique of using lexical rules to establish bindings
works in virtually every instance, but it has the defect of

42

requiring that the information that a thief is a person who steals
things be represented in the lexicon twice at least. A new model
is under construction which attempts to reduce this redundancy

by allowing the rules to have multiple left and right parts.

The problem of selecting appropriate rules is rather easier
to solve. In most compounds in English, there is a characteristic
association between the right element of the nominal compound and
the main verb of the associated relative clause paraphrase. These
two elements which occur on opposite sides of the compounding rule
supply a great deal of information about the possibilities for
application of the rule. $So, in the model, each rule in the
lexicon is indexed by the main verb of the relative clause and
by the right element of the nominal compcund. This index actually
contains some environmental information as well; for the clause
verb, this environmental information is the case frame of the verb
and the fact that it is the main verb of the relative clause --
for the compound nominal, the environmental information is just
the fact that the nominal is the rightmost one in a nominal
compound.

The basic model has been tested with a set of several
hundred nominal compounds and is very successful in coping with
a wide variety of compound types. The productivity of the rules
varies greatly; some rules may produce hundreds of compounds while
other rules may only result in one or two compounds. Frozen forms
such as keel boat are handled by a rule which generates only
one compound:; there is a rule for each frozen form. The rule
structures contain exclusion lists associated with each lexical

item in the rule, and these exclusion lists prevent the rule from
operating whenever a lexical item matches one 6f the items on an
exclusion list if the items occur at corresponding lecations in
the structures.

The model is quite quick in operation; on a high speed
display console, it will generally produce compounds much faster.
than a person sitting at the console can conveniently read them.
This is mainly due to the rule selection heuristic, but the match
procedure has been carefully optimized as well.

43

Conclusions

The model program is an excellent demonstration of the
appropriateness of the basic theory; moreover, the rules
themselves can be generalized to deal with syntactic processes,
so there is no discontinuity in the grammar model between the
lexical processes and the syntactic processes. It seems clear
that the rules could also be used to represent other lexical
processes in language and this is currently being pursued.

There is no reason why the rules could not be used for
recognition as well as for the production of nominal compounds.
The bindings are not one-way, and the matching procedure will
work equally well for compound structures. The reasons why the
computer model is a production model are: (1) that the computer
model assumes the semantic correctness of the input relative
clause structures, and (2) that compounds are often ambiguous
and may be paraphrased by two or more relative clauses, while the
converse of this is almost never true. A recognition model would
have to generate underlying relative clause structures for each
ambiguity and a semantic component would have to-screen the
relative clauses for semantic errors.

I hope that the reader has noticed the avoidance of rule
procedures in this model. When I began working on the design of
the computer programs, I had in mind the creation of a model which
once implemented in LISP could be extended merely by adding new
Tules without having to construct any additional LISP programs.

I ultimately wanted to have a model which could "learn" new rules
by systematic generalization and restriction of existing rules.

I feel that this would be relatively easy with rule structures and
extremely difficult with rule procedures written in a programming
language. Furthermore, I subscribe to Karl Popper's ideas of
scientific endeavour, and rule structures appealed because it
would be more difficult to bury flaws or ill understood aspects

of compounding and rule processes im structures than in procedures
where the computational power of the programming language permits
and even encourages ad hoc solutions to be found to problems.

44

Acknowledgements

I would like to here acknowledge the suggestions made by

Robert F. Simmons, Carlota Smith, Mary Ross T. Rhyne, Laurent
Siklossy, and Stanley Peters which have helped improve my
understanding of nominal compounding.

1-

Chomsky, N. "Remarks on Nominalization," in Readings in
English Transformational Grammar, Jacobs, R. and Rosenbaunm,

P. eds. Ginn, Waltham, Massachusetts, 1970.

Gruber, J. '"Studies in Lexical Relations."” Ph. D. thesis,
MIT, 1965.

Lees, R, The Grammar of English Nominalizations. Mouton,
The Hague, 1968.

Rhyne, J. '"Lexical Rules and Structures in a Computer Model
of Nominal Compounding in English." Ph. D. thesis, The
University of Texas at Austin, 197S5.

Simmons, R. "Semantic Networks: Their Computation and Use
for Understanding English Sentences,'" in Computer Models of
Thought and Language, Schank, R. and Colby, K. eds. VW. H.

Freeman, San Francisco, 1973.

American Journal of Computational Linguistics ricrofiche 33 : 45

GENERATION AS PARSING FROM A NETWORK INTO A LINEAR STRING

STUART C. SHAPIRO

Computer Science Department

Indiana University

Bloomington 47401

ABSTRACT

Generation of English surface strings from a semantic network

is viewed as the creation of a llinear surface string that describes
a node of the semantic network. The form of the surface string is
gontrolled by a recursive augmented transition network grammar,
which is capable of examining the form and content of the semantic
network connected to the semantic node being described. A single
node of the grammar network may result in different forms of sur-
face strings depending on the semantic node it is given, and a
single semantic node may be descrlbed by different surface strings
depending on the grammar node it 1s glven to. Since generation
from a semantic network rather than from disconnected phrase markers,,

the surface string may be generated directly, left to right.
Introduetion

In thls paper, we discuss the approach being taken in the Engllish
generation subsystem of a natural language understanding system
presently under develorment at Indiana University. The core of
the understander 1s a semantlc network processing system, SNePS
(Shapiro, 1975), which is a descendant of the MENTAL semantic sub-
system (Shapiro, 1971a, 1971b) of the MIND system (Kay, 1973).

The role of the generator 1s to describe, in Engllish, any of the

nodes in the semantic network, all of which represent concepts of

the understanding system.

46
and other computations are required in the process of pasting these

trees tog ther in appropriate piaces until a single phrase marker
is attained which will lead to the surface string. Since we are
generating from a semantic network, all the pasting together 1is
already done. Grabbing the network by the node of interest and
letting the network dangle from it gives a structure which may be
searched appropriately in order to generate the surface string
directly in left to right fashion.

Our system bears a superficial resemblance to that described
in Simmons and Slocum, 1972 and in Simmons, 1973. That system,
however, stores surface information such as tense and voice in its
semantic rnietwork and its ATN takes as input a linear 1list contain-
ing the semantic node and a generation pattern consisting of a
"series of constraints on the modality" (Simmons et al., 1973, p. 92

The generator described in Schank et al., 1973, translates from
a "conceptual structure" into a network of the form of Simmons'
network which is then given to a version of Simmons generation
program. The two stages use different mechanisms. Our system
amounts to a unificatio of these two stages.

The generator, as described in this paper, as well as SNePS,
a parser and an inference mechanism have been written in LISP 1.6

and are running Iinteractively on a DEC system~10 on the Indiana

University Computing Network.

Representation in the Semantic Network

Conceptual information derived from parsed sentences or deduced

from other information (or input directly via the SNePS user's lan-

guage) is stored in a semantic network. The nodes in the network

represent concepts which may be discussed and reasoned about. The

edges represent semantic but non-conceptual binary relations

between nodes. There are also auxiliary nodes which SNePS can

use or which the user can use as SNePS variables. (For a more

complete discussion of SNePS and the network sec Shapiro, 1975.)

The semantic network representation belng used does not in- 47
clude 1nformation considered to be features of the surface string
such as tense, voice or main vs. relative clause. Instead of tense,
temporal information 1s stored relative to a growing time line

in a manner similar to that of Bruce, 1972. From this information
a tense can be generated for an output sentence, but it may be a

different tense than that of the original input sentence if time
has progressed in the interim. The volice of a generated sentence
is usually determined by the top level call to the generator func-
tion. However, sometlimes it is determined by the generator gram-
mar. FIFor example, when generating a relative clause, volce is
determined by whether the noun being modifled .is the agent or ob-
Ject of the action described by the relatlve clause. The nmain
clause of a generated sentence depends on which semantic node is
given to the generator in the top level call. Other nodes con-
nected to it may result in relative clauses being generated. These
roles may be reversed in other top level calls to the generator.

The generator is driven by two gets of data: the semantic net-
work and a grammar in the form of a recursive augmented transition
network (ATN) similar to that of Woods, 1973. The edges on
our ATN are somewhat different from those of Woods since our view
1s that the generator 1s a tranducer from a network into a linear
string, whereas a parser 1s a transducer from a linear string into
a tree or network. The changes this entalls are discussed below.
During any polnt in generation, the generator 1s working on some
particular semantic node. PFunctions on the edges of the ATN can
examine the network connected to this node and fall or succeed
accordingly. In thils way, nodes of the ATN can "decide" what sur-
face form is most appropriate for describlng a semantie¢ node, while
different ATN nodes may generate different surface forms to des-
cribe the same semantic node.

A common assumption among linguists 1s that generation begins

with a set of disconnected deep phrase markers. Trans format long

48

%% % 3'&0003 ‘MOOOB
¥ = MOO1T7{
Y, a 37 HIOA,
M0009 . ¥... TM0012 </ MOOLI™~\
MOO.Ll 0) AT
] WHICH m0020 MO013 % mogos
Moo16§f 3 M *
<XM0018
LEX LEX |LEX |LEX LEX |LEX LEX LEX
3 3 3 : 3 6 . 3
DOG KISS YOUNG SWEET LUCY PERSON CHARLIE BELIEVE

Figure 1: Semantlc Network Representation for "Charlie belleves
that a dog kilssed sweet young Lucy," "Charlie is a person," and
"Lucy is a person."

~«f2rmation considered to be features of surface strings are not
stored in tire semantic network, but are used by the parser in con-
structing the network from the lnput sentence and by the generator
for generating a surface string from the network. For example,
tense 1s mapped into and from temporal relations between a node
representing that some action has, is, or will occur and a growing
time line. Restrictive relative clauses are used by the parser
to identify a node belng discussed, while non-restrictive relative
clauses may result in new information being added to the network.
The example used in thils paper is designed to illustrate the
generation 1ssues being discussed. Although it also illustrates

our general approach to representational issues, some details will

49

¥ (SNEG MQOZ2b)

(CHARLIE IS BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY):
* (SNEG M0023)

(A DOG KISSED SWEET YOUNG LUCY)

% (SNEG M000T7)

(CHARLIE WHO IS BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY)

% (SNEG MO00J4)

(CHARLIE IS A PEKSON WHO IS BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY)
(SNEG MOO006)

(CHARLIE WHO IS BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY IS A PERSON)
¥ (SNEG M0008)

(THE BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY BY CHARLIE
* (SNEG M0011l)

(A DOG WHICH KISSED SWEET YOUNG LUCY)

% (SNEG M0010)

(THAT WHICH KISSED SWEET YOUNG LUCY IS A DOG)
* (SNEG M0012)

(THE KISSING OF SWEET YOUNG LUCY BY A DOG)

% (SNEG M0020)

(SWEET YOUNG LUCY WHO WAS KISSED BY A DOG)
% (SNEG MOO1lH)

(LUCY IS A SWEET YOUNG PERSON WHO WAS KISSED BY A DOG)
*(SNEG M0015)

(SWEET YOUNG LUCY WHO WAS KISSED BY A DOG IS A PERSON)
¥ (SNEG M0OO017)

(SWEET LUCY WHO WAS KLSSED BY A DOG IS YOUNG)
* (SNEG M0019)

(YOUNG LUCY WHO WAS KISSED BY A DOG IS SWEET)

Figure 2: Results of calls to the generator with nodes from
Figure 1l- User input 1s on lines beginning with ¥.

certalnly change as work progresses. Figure 1 shows the semantic

network representation for the information in the sentencess, "Charlie

believes that a dog kissed sweet young Lucy," "Charlie is a person,"

and "Lucy is a person." Converse edges are not shown, but

1n all cases the label of a converse edge is the label of the for-
ward edge with '*' appended except for BEFORE, whose converse edge

1s labelled AFTER. LEX pointers point to nodes contalning lexical

entries. STIME polnts to the starting time of an action and ETIME
to its ending time. Nodes representing instants of time are re-
lated to each other by the BEFORE/AFTER edges. The auxiliary node
NOW has a :VAL pointer to the current instant of time.

Figure 2 shows the generator's output for many of the nodes of

Figure 1. Filgure 3 show3 the lexlicon ugsed in the example.

50

(BELIEVE((CTGY.V) (INF.BELIEVE)
(PRES.BELIEVES) (PAST.BELIEVED) (PASTP .BELIEVED) (PRESP.BELIEVING)))
(CHARLIE((CTGY.NPR)(PI.CHARLIE)))
(DOG{ {CTGY.N) (SING.DOG) (PLUR.DOGS)))
(KISS{(CTGY.V) (INF.KISS)

(PRES.KISSES) (PAST.KISSED) (PASTP.KISSED) (PRESP.KISSING)))
(LUCY.((CTGY.NPR) (PI.LUCY)))

(PERSON({CTGY.N (SING.PERSON) (PLUR.PEOPLE)))
(SWEET({CTGY .ADJ) (PI.SWEET)))
(YOUNG{(CTGY.ADJ) (PI.YOUNG)))

Figure 3: The lexicon used in the example of Figures 1 and 2.

Generation as Parsing

Normal parsing involves ftaking input from a linear siring and

producing a tree or network structure as output. Viewing this

in terms of an ATN grammar as described in Woods, 1973, there is a
well-defined next input functlon which simply places successive
words into the: ¥ register. The output function, however, is more
complicated, using BUILDQ to build pieces of trees, or, as in our
parser, a BUILD function to build pieces of network.

If we now consider generating in these terms, we see that there
is no simple next input function. The generator will focus on
some semantic node for a while, recursively shifting its attention
to adjacent nodes and back. Since there are several adjacent nodes,
connected by variously labelled edges, the grammar author must
specify which edge to follow when the generator is to move to another
semantic node. For these reasons, the same focal semantic node
is used when traversing edges of the grammar network and a new se-
mantic node is- specified by giving a path from the current semantic
node when pushing to a new grammar node. The register SNODE is
used to hold the current semantic node.

The output functlion of generatlion is straightforward, simply
being concatenation onto a growing string. Since the output string

is analogous to the parser's input string, we store it in the reg-

51

gare ::= (TEST test [action]*(TO gnode))
(JUMP [eaction]*(TO gnode))
(MEM wform (word*) test [action]*(TO gnode))
(NOTMEM wform (word*) test [action]*(TO gnode))
(TRANSR ([regname] regname regname) test [action]¥* (TO gnode))
(GEN gnode sform [actlon]®*regname [actlion]*¥(TO gnode))
sform ::= wform
SNODE

wform ::= (CONCAT fqorm form*)
(GETF sarc [sform])
(GETR regname)
(LEXLOOK 1feat [sform])

sexp
form.::= wform
sform
action ::= (SETR regname form

(ADDTO regname form¥)
(ADDON regname form¥)
sexp

test ::= (MEMS form form)

(PATH sform sarc¥* sform)
form

sexp

gnode ::= <any LISP atom which represents a grammar node>
word ::= <any LISP atom>

regname ::= <any non-numeric LISP atom used as a register name>
sarc ::= <any LISP atom used as a semantic arc label>
1feat ::= <any LISP atom used as a lexical feature>

sexp ::= <any LISP s-eXxpression>

Figure 4: Syntax of edgesd of generator ATN grammars

ister *. When a pop occurs, 1t is always the current value of #*
that is retiurned.

Figure U4 shows the syntax of the generator ATN grammar. Object
language symbols are), (, and elements 1n capltal letters. Meta-
language symbols are in lower case, Square brackets enclose op-
tional elements. Elements followed by * may be repeated one or more
times. Angle brackets enclose informal English descriptions.

Semantics of Edge Functions

In this section, the semantics of the grammar arcs, forms and

tests are presented and compared to those of Woods' ATNs .+ The

A it

t All comparisons are with Woods, 1973.

s2

TEST(GETF_VERB) ZREG
TEIT(GETF _ADJ) —w(SADT D)

- . SADJ
TEST(GETF NAME)

TEST (GETF MEMBER) SMEM

TEST{GETF VERB)(SETR REF NIL)
J

; =m + *
G1 JUMP NCLND TEST(GETF_VERB*) _@
TME

JUMP(SETR * @(//// NO GRAMMAR NODE FOUND))

Figure 5: The default entry into the grammar network.

essential differences are those requlired by the differences between

generating and parsing as discussed in the previous section.

(TEST test [action]¥*(TO gnode))
If the test 1s successful (evaluates to non-NIL), the actions
are performed and generation continues at gnode. If the test

fails, this edge is not taken. TEST-is the same as Woods' TST,
while TEST(GETF sarc) is analogous to Woods' CAT.

(JUMP [action]*(TO gnode))

Equivalent to (TEST T [action]*(TO gnode)). JUMP is similar

in use to Woods' JUMP, but the difference from TEST T disappears

since no edge "consumes" anything.

(MEM wform (word¥®) test [action]*(TO gnode))

If the value of wform has a non-null intersection with the
list of words, the test 1s performed. If the test is also success~
ful the actions are performed and generation continues at gnode.

if either the intersection 1s null or the test fails, the edge

53

MEM(GETR VC)(PASS)T_.%EE}‘GEN NCLNP (GETF OBJECT)
(ADDTO DONE SNODE)#*

_GEN NCLNP (GETF AGENT)(ADDTO DONE SNODE)*

Figure 6: Generation of subject of subject-verb-object sentence.

(_SREG) PRED

is not taken. This is similar in form to Woods' MEM, but malnly

used for testing registers.

(NOTMEM wform (word*) test [action]*(TO gnode))

This 1s exactly llke MEM except the 1ntersection must be null.

(TRANSR ([regnamelj regname., regname3) test [action]*{TO gnode))
If regname is present, the contents of regname2 are added

on the end of regname, . It regname3 is empty, the edge is not

taken. Otherwise, the first element in r'eg;name3 is removed and

placed in regname., and the test 1s performed. If the test fails,

the edge 1s not taken, but if it succeeds, the actions are performed

and generation continues at gnode. TRANSR 1is used to 1lterate through

several nodes all in the same semantlie relation with the main se-

mantic node.

(GEN gnodel sform [action]¥regname [action]*(TO gnode2))

The first set of actions are performed and the generation 1s
called recursively with the semantic node that 1s the value of sform
and at the grammar node gnodel. If this generatlon 1s successful
(returns non-NIL), the result is placed in the register regname,
the second set of actions are performed and generation continues
at gnodez. If the generation falls, the edge 1s not taken. This
is the same a8 Woods' PUSH but requires a semantic node to be speci-
fied and allows any register to be used to hold the result. In-

stead of having a POP edge, a return automatically occurs when

54

TEST(Palid Gl b Lk) ot URE(* GhOW)) »(VPASTD

TEST(PATH(GETF STIME)AFTER(* Q@NOW))

JUMP (SETR REF(STRIP(FIND AFTER{4(GETF STIME))

(PRED) BEFORE (+(GETF ETIME)))))

TEST(PATH(GETF ETIME)BEFORE AXTER(* «04)) T
(ADDON * Q@WILL Q@HAVE)

TEST(PATH(GETF ST1ME)AFTER BEFORE(¥ @NOW)) T
(ADDON * @WOULD)

JUMP (ADDON ¥ @(///CANNOT COMPUTE TENSE))

(TFROGR)-LEST(GETR REF) e(VPROGRTTS)
TEST(MEMS (GETR REF) (* @NOW)) (ADDON * RIS)

E E(#¥ W ® 3
@PROGRTNS%TES‘E(PATH(GETR REF)BEFCRE (¥ @NOW)) (ADDON '_WAS)
TEST(PATH(GETR REF)AFTER(*‘@NOW))(ADDON ¥ QWILL ZBE) 4

MEM(GETR VC) (PASS)T(ADDON ¥* @BEEN)

JPE_) JUMP
MEM(GETR VC) (PASS)T(ADDON ¥ @BE)
VFP JUMP

MEM(GETR VC) (PASS)T(ADDON * @WILL @§E)‘\\

(WFUT_)__juMP (ADDON * @WILL) -

MEM(GETR VC) (PASS)T(ADDON * QWAS)

JUME :
MEM(GETR VC)(PASS)T(ADDON * @BEING) _/

(EROGRLI ;yMp (ADDON *# (LEXLOOK PRESP(GETF VERB)))

AST1)

575, JUMP(ADDON * (LEXLOOK PASTE(GETF VERB)))
JUMP (ADDON * (GETF VERB))) SUROB
@E D LEXLOOK INF(E) -
—— JUMP (ADDON * (LEXLOOK PAST(GETF VERB)))

Figure 7: Tense generation network.

transfer is made to the node END. At that point, the contents of

the register named ¥ are returned.

(CONCAT form form¥)
The forms are evaluated and concatenated 1n the order given.

Performs a role analogous to that of Woods' BUILDQ.

(GETF sarc [sform])
Returns a list of all semantic nodes at the end of the seman-

tic¢ ares labelled sarc from the semantic node which is the value

55

Tenge Actilve Passive

past broke was broken

future will break will be broken
present progressive| 1s breaking is being broken

past progressive was breakling was belng broken
future progréssive will be breaking| will be being broken
past in future will have broken}| will have been broken
Future in past would break would be broken

Pigure 8: The tenses of "break" which the network of Figure 7
can generate.

of sform. If sform is missing, SNODE is assumed. Returns NIL if

there are no such semantic nodes. It is similar in the semantic

domain to Woods' GETF in the lexical domain.

(GETR regname)

Returns the contents of register regname. It 1s essentially

the same as Woods' GETR.

(LEXLOOK 1lfeat [sform])

Returns the value of the lexical feature, 1lfeat, of the lexical
entry associated with the semantic node which is the value of sform.
If sform is missing, SNODE is assumed. If no lexical entry is asso-
ciated with the semantic node, NIL is returned. LEXLOOK is similar

to Woods' GETR and as also in the lexical domain.

(SETR regname form)

The value of form is placed in the register regname. It is

the same as Woods' SETR.

(ADDTO regname form*)
Equivalent to (SETR regname (CONCAT (GFTR regname) form¥*)).

(ADDON regname form*)

Equivalent to (SETR regname (CONCAT form* (GETR regname))).
(MEMS form form)

Returns T i1f the values of the two forms have a non-null intersec-
tion, NIL otherwilse.

TEST(GETF AGENT) (ADDON * @BY) srree
MEM(GETR VC) (PASS)T
JUMP

UROB TEST{GETF OBJECT PREDOBJ
UMP

*
C:)PBEDAGI GEN_NCLNP (GETF AGENT) REG (ADDON *(GETR REG))

(::::::2; *
PREDOB GEN NCLNP(GETF OBJECT) REG (ADDON *(GETR REG))

Figure 9: Generating the surface object.

(PATH sform, sarc®* sformz)

1
Returns T if a path described by the sequence of semantic arcs
exists between the value of sforml and sformz. If the sequence
is sarcl sarc, ... sarc., the path described is the same as that
indicated by sarcl* sarcz* cee sarcn*. If no such path exists,

NIL is returned. (Remember, ¥ means repeat one or more times.)

Discussion of an Example Grammar Network

The top level generator function, SNEG, is given as arguments
a semantlc node and, optionally, a grammar node. If the grammar
node 1is not given, generation begins at the node Gl which should
be a small discrimination net to choose the preferred description
for the given semantic node. This part of the example grammar is
shown 1In Flgure 5. JIn it we see that the preferred description
for any semantic node 1s a sentence. If no sentence can be formed
a noun phrase wlll be tried. Those are the only presently avail-
able options.

Semattic nodes with an outgoing VERB edge can be described by
a normal SUBJECT-VERB-OBJECT sentence. (For this example, we

have not used additional cases.) First the subject is generated,

57

3E57 GEN NP(CETF WHICH) (ADDTO DONE SNODE)*
(ADDON * QIS(LEXLOOK PI(CETF ADJ)))

SHAVE GEN NP(GETF NAMED) (ADDTOQ DONE SNODE)*
(ADDTO *(LEXLOOX PI(GETF NAME)) @QIS)

END

SWEM GEN NP(GETF MEMBER) (ADDTO DONE_SNODE) ¥
(ADDON * @IS @A(LEXLOOK SING(GETF CLASS)))

Figure 10: Generating the three "non-regular" sentences.

which depends on whether the sentence is to be in active or passive
voice. Alternatively, the choice could be expressed in terms of
whether the agent or obJect 1s to be the toplic as suggested by Kay,
1975. Figure 6 shows the network that generates the subject. The
register DONE holds semantic nodes for which sentences are being
generated for later checking to prevent infinite recursion. Without
it, node M0023 of Figure 1 would be described as, "A dog which kissed

young sweet Lucy who was klssed by a dog which klssed..."

The initlal part of the PRED network is concerned with generat-
ing the tense. This depends on the BEFORE/AFTER path between the
starting and/or endine time of the actlon and the current value of
NOW, which.1s given by the form (¥ @NOW). TFigure 7 shows the tense
generation network. Figure 8 shows the tenses this network is able
to generate.

After the verb group l1ls generated, the surface objJject is gener-
ated by describing elther the semantic agent or objJect. Figure 9
shows this part of the network

The other three kinds of sentences are tor describing nodes
representing: (1) that something has a particular adjective attribu-
able to 1t, (2) that something has a name, (3) that something is a
member of some class. The networks for these are shown in Pigure
10. Agaln, the DONE register 1s used to prevent such sentences as

"Sweet young Lucy 1s sweet," "Charlie 18 Charlie," and "A dog 1s a dog."

58

%
@l’UMP (ADDON * @THE(LEXLOOK PRESP))(ADDTO DONE(GETF VERB*))

GEN S (GETF OBJECT(GETF VERB¥*))REG(ADDON * @THAT(GETR REG))

VO GEN NP(GETF OBJECT(GETF VERB¥*))REG(ADDON ¥ @OF(GETR REG))

NVA
UMP .
GEN NP(GETF AGENT(GETF VERB*¥*))REG(ADDON * @BY(GETR REG))
HVA
JUMP CEND)

cﬁgzngN SREG_SNODE ¥ (ADDTO * QTHAT)

Figure 11: Generating nominalized verbs and sentences.

Fugure 5 showed three basic kinds of noun phrases that can be
generated: the noun clause or nominalized sentence, such as "that
a dog kissed sweet young Lucy"; the nominalized verb, such as "the
kissing of sweet young Luecy by a dog"; the regular noun phrase.

The first two of these are generated by the network shown in Figure

11. Here DONE is used to prevent, for example, "the kissing of sweet

young Lucy who was kissed by a dog by a dog."

The regular noun phrase network begins with another descrimina-
tion net which has the following priorities: use a name of the objJect;
use a class the objJect belongs to; use something else known about
the object. A lower priority description will be used if &all higher
priority descriptions are already in DONE. PFigure 12 shows the be-
ginning of the noun phrase network. AdjJectives are added before the

name or before the class name and a relative clause 1s added after.

59
TEST(AND (GETF WAMED?) (NUT (MEMS (UTF NAMED*) {GETR DONE))) NPNA

T N ER#* EMS ' MENMHER¥*
B EST(AND(GETF MEMBER*) (NOT (MEMS (GETF MENBER*) (GETF DONE))))
TEST(OR(GETF AGENT*)(GETF OBRJECT*))(SETR * MTHAT)

GEN ADJS SNODE *

ToMp 3@ JUMP (ADDON *
(LEXLOOK PI(GETF NAME(GETF NAMED*))))

GEN ADJS SNODE_*(ADDTO * @A)

UMP (SETR * @A)

T JUMP (ADDON *
(LEXLOOX SING(GETE CLASS(GETF MEMBER%*))))

Figure 1l2: The beginning of the noun phrase network.

Figure 13 shows the adjectlve string generator and Figure 14 shows
the relative clause generator. Notice the use of the TRANSR edges
for iterating. At this time, we have no theory for determining the
number or whilch adjectives and relative clauses to generate, so
arbitrarily we generate all adjectives not already on DONE but only
one relative clause. We have not yet implemented any ordering of

adjectives. It is merely fortuitous that "sweet young Lucy" is

generated rather than "young sweet Lucy". The network is written
80 that a relative clause for which the noun is the deep agent 1s
preferred over one In which the noun 1s the deep object. Notice
that this cholice determines the voice of the embedded clause. The
form (STRIP(FIND MEMBER (4 SNODE) CLASS (FIND LEX PERSON))) is a
call to a SNePS function that determines if the obJect is known to
be a person, in which case "WHO" 1s used rather than ™WHICH". This
determination is made by referring to the semantic network rather

than by including a HUMAN feature on the lexical entrles for LUCY
and CHARLIE.

60

*
ADTS JUMP (SETR ADJS (GETF WEICH

TEST(NOT(MEMS (GETR ARJ) (GETR DONE)))
* -
TRANSR(”DJ ADJS)T A (ADDON *(LEXLOOK PI(GETF ADJ(GETR ADJ))))

ADJ
JUMP_

Figure 13: The network for generating a string of adjectives.

Notice that any information about the object being described
by a noun phrase may be used to construct a relative clause even
if that information derived from some main clause. Also, whille
the generator is examining a semantic node all the information about
that node 1s reachable from it and may be used directly. There
is no need to examine disjoint deep phrase markers to discover where

they can be attached to each other so that a complex sentence can be

derived.

Future Work

Additional work needs to© be done 1n developing the style of
generation described in this paper. Experience with larger and
richer networks will lead to the following issues: describing a node
by a pronoun when that node has been described earlier in the string;
regulating verbosity and complexity, possibly by the use of resource
bounds simulating the limitations of short term memorys keeping sub-
ordinate clauses and descriptions to the point of the conversation
possibly by the use of a T0-DO register holding thenodes that are
to be included in the string.

In this paper, only indefinite descriptions were generated. We
are working on a routine that will identify the proper subnet of the
semantic network to justify a definite description. This must be
such that it uniquely lidentifies the node being described.

61
REL JUMP (SETR CLZ (GETP AGENT*

TEST (NOT (MEMS (GETR CL) (GETR DONE)))

TRANSR(CL CLS)T (SETR VC @ACT)
R

JUMP

RELPASS)JUMP (SETR CLS(GETF OBJECT*))

TEST(NOT(MEMS (GETR GL)(GETR DONE)))

/ (SETR Ve @PASS)
»(RELPASS2)

JUMP JUMP

TRANSR(CL CLS)T

TEST(STRIP(FIND MEMBER(4 SHIDE)CLASS(FIND LEX PERSON)))
RELADD (ADDON * @WHO)

RELADD1
JUMP (ADDON * QWHICH
RELADDT)CEN PRED(GETR CL) (ADDTO DONE(GETR CL))REG NG
(ADDON * (GETR REG))

Figure 14: The relative clause generator.

Acknowledgements

The author is Iindebted to John Lowrance, who implemented the
generator, Stan Kwasny, who implemented the parser, Bob Bechtel,
who worked dut the temporal representation, Nich Vitulll and Nick
Eastridge, who implemented versions of SNePS, and Jim McKew for
general software ~upport. Computer service was provided by the

IUPUI Computing Facilities. Typing and graphics were done by
Christopher Charles.

62

References

Bruce, B.C. 1972. A model for temporal references and its appli-
cation in a question answering program. Artificial Intelli-

gence 3, 1, 1-25.

Kay, M. 1973. The MIND system. Natural Language Processing, R.
Rustin (Ed.), Algorithmics Press, New York, 155-180.

Kay, M. 1975. Syntactic processing and functional sentence per-
spective. Theoretical Issues in Natural Language Processing

R. Schank and B.L. Nash-webber (Bds.), Bolt Beranek,& Newman,
Inc., Cambridge, Massachusetts.

Schank, R.C.3; Goldman, N.; Rieger, C.Jd., III; and Riesbeck, C. 1973.
MARGIE: memory, analysis, response generation, and inference
on English. Proc. Third International Joint Conference on Arti.
ficial Intelligence, Stanford University, August 20-23, 255-261.

Shapiro, S.C. 1971a. The MIND system: a data structure for seman-
tic information processing. R-837-PR. The Rand Corp., Santa
Monica, California.

Shapiro, S.C. 1971b. A net structure for semantic information
storage, deduction and retrieval. 2nd International Joint Con-
ference on Artificlal Intelligence: Advance Papers of the Con-
ference, British Computer Society, London, 512-523.

Shapiro, S.C. 1975. An introduction to SNePS. Technicdal Report

No. 31, Computer Science Department, Indiana University, Bloom-
ington,

Simmons, R.F. 1973. Semantic networks: their computation and use
for understanding English sentences. Computer Models of Thought

and L e, R.C. Schank and K.M. Colby (Eds.), W.H. Freeman
and Co., %an Francisco, 63-113.

Simmons, R.F., and Slocum, J. 1972. Generating English discourse
from semantic nets. Comm. ACM 15, 10, 891-905.

Woods, W.A, 1973. An experimental parsing system for transition

network grammars. Natural Language Processing, R. Rustin (Ed.),
Algorithmics Press, New YOTK, %Tigiﬁu.

American Journal of Computational Linguistics microriche 33 : 63

SPEECH GENERATION FROM SEMANTIC NETS

JONATHAN SLOCUM
Artificial Intelligence Center

Stanford Research Institute
Menlo Park, California 94025

ABSTRACT

Natural language output can be generated from semantic nets
by processing templates associated with concepts in the net, A
set of verd templates is being derived from a study of the
surface syntax of some 3000 English verbss the active torms of
the verbs have been classified according to subject, object(s),
and complement(s)) these syntactic patterns, augmented with case
names, are used as a grammar to control thé generation of text,
This text {in turn i{s passed through a speech synthesis progranm
and output by 4 VOTRAX speech synthesjiZer, This analysis should
ultimately benefit systems attempting to understand English input
by providing surface structure to deep case¢ structure maps using

the same templates as employed by the generator.

Acknowledgmaent

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and monitored by the
U, 8, ArmY Research Office under Contract No, DAHC04~75-C=0006,

64

INTRODUCTION

If computers are to communicate effectively with Ppeople,
they must speak, or at least write, the user’s nhatural language,
The bulk of the vwork in computational 1linguistics has been
devoted to computer understanding of natural language input, but
relatively little effort has been expended in developing natural
language output, Most English ocutput systems have been along the
line of "f£{11 4in the blank"™ with perhaps some semantic
constraints imposed; there have been fevw attempts at language
generation from what one could call "semantic net" structures
(Simmons and Slocum, 19723 8locum, 19733 Goldman, 1974),

Perhaps generation is considered a much easier problem, The
success o©f understanding efforts is generally believed to depend
on some workable theory of "discourse organization® which would
account for effects of context and would show how anaphoric
expregsions (pronouns and noun phrases) are resolved and how
sentences are ordered {n the output, As it happens, these
mechanisms are precisely those that a "response generator" must
incorporate {f it {s to appear intelligent, The study of
generation will play an important role in solving the problem of
understanding 4{f it can demonstrate a mapping from deep semantic
structures to surface strings,

Let us brietly outline some relevant processes in the speech
understanding system being developed by SRI and 8DC (Walker et
al,s 1975, and Ritea, 1975), The user ({nitiates a Ssession by

establishing commynication with the system; all subsequent dialog

65

({input and output) is monitored by a "discourse module® (Deutsch,
1975) te maintain an accurate conversatjional context, An
executive coordinates varjious knowledge Sources e= acoustic,
prosodic, syntactic, semantic, pragmatic, and discourse == to
*understand® successive utterances,

The analyzed Utterance is then passed to the "responder® ==
another component of the discourse module, The responder may
call the question~angwerer 1f the {nput is a questiony; it may
call a data base uUpdate program i{f the input is a statement of
facty) or it may decide on some other appropriate reply, The
content of the response is passed to the generator, perhaps with
some indication of how {(t s to be formulated., The reply may be
a stereotyped response ("yes®, "no", "I gsee™), a noun phrase
{(node), a sentence (Verb node), or, eventually, a paragraph,

The generator outputs stereotyped responses immedlately; 1if
the response 1s more complicated (a "noun" node, "verb"™ node, or
eventually a network), a more detailed program {8 required, This
program will determine exactly how the respocnse is8 to be
formulated ~- as an NP, 5, or sequence of 883 it may be required
to choose Verbg and nouns With which To exXpress the deep Case netl
structures, as vell as a gyntactic frame for the generation, The
generator produces the response in "text" formjy this in turn s
passed to a speech synthesis program for transformation and
output by a commercial VOTRAX speech syntheslzer. Currently no
sentence intonation or stress contouring is being performed,

8ince the major interest of this paper igs in "text" generation,

A A
no further reference to the synthesis step will be mzde,

CONSTRAINTS OR RESPONDING

There are several considerations i{nvolveé in responding
appropriately to an utterance, First, there 2&re "converzational
postulates®™ (Gordon and Lakxoff, {975) shared by the Uusels of &
language; these postulates serve to0 constrain the content and
form of communications from the speaker fo the heearer, For
instance, the speaker should not tell the hearer terething the
hearer already knows, lest he be bored; vet the sapeaker cannot
tell the hearer socmething the hearer knovs absolutely nothing
about, or the hearer wi{ll net comprehend, The speaker nhould
relate the news in his message to the prior knowledge of the
hearery this requires the speaker tc have & model of the hearer
These heuristics must operate in conjunction ¥with ¢ "recponte
producer” to constrain what nmay be output by & "gentence”
generator, We are only beginning to vunderstand how to
incorporate thegse postulates (n & language precessing fystem,

Then there s the matter of constructing the bacic sentence
Normal English syntax requires at least one verb in the gentencejy
choosing a ma{n verb constrains the surface structure, Fot
instance, in the absence of compounds any verps other than the
rain verb will have to appesar in another formi nominal,
infinitive, gerund, participle, or subordinate claure, How doer
the relevant i{nformation contained in & gementic net indicate the
appropriate form? The <traditional answer (g% "by means of the

lexicon," We will explore the Trelationship betveen net &nd

67

lexicon and advance a methodology for represSenting a map from
deep case structure to surface structure,

This paper focuses on a phllosophy o0f2 single~sentence
formattingt: choosing a main verb, choosing the ¢gross strycture of
the output sentence, and declding how to generate appropriate
noun phrases, Our examples ¥Will employ simplified semantic net
structyresg, somewvhat llke those in the actual SRI ‘"partitioned
semantic net"™ system (Hendrix, 1973), Nodes in the net may
repregent physical objects, relationships, events, seéts, rules,
or utterances, as in the example below, Directed labelled arcs
connect nodes and represent certain "primitive®™ time-=invariant

relationships,

<8,0WN>)

\

(<0wN,2>
owl lEBJ

(CSEAWOLF 1) GVALIANT,1>)
@ @
(<sEaWOLFS>) (<VALIANTS>)
@ B

<BUBMARINES>)

In the pnet fragment above, the U,8, and the U.,K, are elements (e)

of the get of countries, As EXPerlencers they each participate

68

in OWNing situations involving as OBJects particular submarines;
each submarine {8 an element of some class of submarine., and

these classes are subsets (5) of the set of all submarlines,

GENERATION TEMPLATES

The first requirement for gensration s to derive some
termplates for English sentences, We choose a simple verb for
demonstration == OWN, We note that our verb has severa)
"synonyms"t HAVE, POSSESS, and BELONG (TI0). 8Since each of these
verbs (including OWN) has other sense meanings, vwe pesit a node
<8,0WN> {n the net that correspaonde to the abstract "ownership”
sense they have in common; this node will be the "prototypical”
OWN, in that it will incorporate the "meaning" of the situation
6f owning (including any semantic constraints on {ts arguments),
eand {n that all instanceg of owning gituations will be related to
it, With this node we will associate the appropriate verbs (QOWN,
POSSESS, HAVE, BELONG) and templates, NKote that one template
will not suefice for all four verbs; for {nstance, the subject of
BELONG {s the OBJect entity, ¥hile in the other (active) verbs
the subject {s the EXPeriencer:

EXP owns OBJ 3 OBJ {s owned by EXP

EXP possesses OBJ 3 OBJ 18 possessed by EXP

EXP has OBJ ; OBJ Lbelongs to EXP
S0 we propose the corresponding templates:

(OWK (EXP Vvact QBJ) (OBJ Vpas BY EXP))

(POSSESS (EXP Vact 0OBJ) (0BJ Vpas BY EXP)]

(HAVE (EXP vact OBJ)] (BELONG (OBJ Vact TO EXP)]

Now, in order to speak about & particular owning gitvation, vwe

pursue the hierarchy to £ind the "canonicel" 8.0WKR, ehoocke a Verb

69

(say, BELONG) and an associated template (0OBJ Vact TG EXP), and
generate the congtituents consecutively,

But we have a problemy there is no indication of how the EXP
and OBJ arguments are to be generated, NP will not alvays
suftice; note for instance that the predicate argument of "hope"
in "John hoped to go home"™ must be an infinitive phrase (rather
than the gerund phrase that NP might produce), Even a cursory
study of a few hundred verbs in the language shows that they have
very definlte (and regular) constralnts on the syntactic form of
their constituents, These constraints appear to be matters for
the lexicon rather than the grammar, Therefore, we agsoclate
verbs and templates with word senses (prototypical nodes in the
net) rather than i{mplement them Via grammar Trules, and ve
explicitly incorporate the constituent types in the templates:

(OWN ((NP EXP) Vact (NP QOBJ)) ((NP QOBJ) Vpas BY (NP EXP))]
(POSSES® ((NP EXP) Vact (NP OBJ)) ((NP OBJ) Vpas BY (NP EXP))])

(HAVE ((NP EXP) Vact (NP 0BJ))]
(BELONG ((NP OBJ) vact TQ (NP EXP))]

R set of patterns 1like these 1is asgociated with every
"prototype verb" node in the Knowledge bagse, 1t would seem that
all ve need i{is an Iinterpreter that, given any "verb {instance”
node in the knowledge hasgse, lo0Oks yp the patterns for that type
of node, chooses a verb, a corresponding template for the verb,
and then proceeds teo "evaluate® the pattern:

verb (QWN,l==>8 OWN] ==> belong
temp =-> [(NP OBJ) Vact TO (NP EXP)]

(NP OBJ) ==> the¢ Seawolf
Vact «=«> belongs

TO wwP tQ

(NP EXP) =«> the U.8,

70

But we stil] run into trouble with our simple &scheme,

Consider the sentence, "John burned the toast black,"

By using the simple pattern ((NP AGT) Vact (NP O0OBJ)) ve could
easily generate the "incorrect" sentence, "John burned the black
toast," since (NP 0BJ) might include the color of the toast, We
need a pattern more like ((NP AGI) Vact (NP OBJ) (Mod RES)), in
which the RESult of the action will be directly related to the
Verb, HowWever, this {8 not quite enough == at least, not without
a very complicated interpreter == because the {Interpreter must
Know that (NP O0BJ) cannot include the verb’s RES argument
(black), Thus, by convention, we may indicate an extra argument
to be passed to a constituent generator (such as the functien NP)
to denote the item(s) not to appear in the resultant constituents
((NP AGT) Vact (NP OBJ RES) (Mod RES))
The pattern (NP OBJ RES) means "generate arn NP using the OBJect
of the verb, but do not {nclude the RESult of the verb in the
NP.," This convention actually prevents enormouUs proliferation of
patterns (i.e¢., a pattern copy for every possiBble "missing"
congtituent), This level of detail would be unreasonable if fev
other verbs could use this template; however, there are moie¢ than
& hundred verbs that share this game pattern. Since tnere are
relatively feow templates, each shared by several tens or hundreds

¢f verbs, the use 0f templates proves to be quite helpful,

71

There are other sources of potential pattern proliferation,
an important one being the combinatorial arrangements of case
arguments of time, manner, and other such adverbials, as well as
other (possiblY non=adverbial) case arguments such as source,
goal, instrument, etec, Some of these arguments are rather
constrained in their positions in the sentence, but others may

appear almost anyvheres

"Yesterday the ship sailed from the lighthouse to the dock,"

"The ship sailed from the lighthouse to the dock yesterday."

"Yesterday the ship sailed to the dock from the lighthouse."
It is of course unreasonable to try to maintain all the possible
patterns! instead we leave insertion of these adverblal arguments
to a single heuristic routine (described below), There are
several justicications for this, among them: (1) the particular
form of the verb cannot be generated until the subject object(s)
and complement(s) have peen generated, (2) these adverbials are
$§0 universal as to appear in almost any of the patterns and in
several possible places, and (3) there are gome heuristic
constraints involved in the placement of arguments,

One may quegtion whether passive templates should be gstoreds
certainly, they could be derived, On the other hand, neglecting
to store them would force us to indicate with each verb (sSense),
vhether it can (or, sometimes, must) be passivized, Indicating
"transitive®” {8 not enough 8ince there are transitive Verbs
(i,e,, verbs that take an object) that cannot be passivized,

8ince we have to store the information anyway, we can save somne

code and computing time by storing the Dassive tenmplate,

72

There are several reasons for generating the verb after the
rajor arguments, First the subject must be generated so that the
verb can be made to agree in number, Second, certain word senses
are true of verbeparticle combimations while not of the {sclated
verb, 8ince, in addition, particles must appear after objects
that are short (like pronouns) but before objects that are long
(1ixXe noun phrases), the particle must be positioned after the
object {35 generated. Finally, {nsertion of some adverbials
(e,g, "not") requires an auxiliary verb =- thus verb generation

nust follov adverbial generation,

VERB PATTERNS

This study started with the 25 rverb patterns” presented by
Hornby (19%4), These in turn came from a dictionary by Hornby et
al,, (1948), Verbs in the dictionary are classified according to
their gross syntactic patterns of subject, object(s), and
compPlement(s); most of the patterns are sub=divided, The authors
claim that these patterns account for &all constructions involving
all the verbs in their dictionary ==- and, by extension, in the
language, This classification s not immediately useful to
computational linguists since it does not address underlying
semantics, Neverthelegs, it {s clear that it can serve as the
basis for s derivation of underlying case Sstructures and,
particularly, as a basis for "generation templates,”

These patterns are being converted into templates much like
those derived earlier; the analysis {s being performed with

respect to about 3000 verbs drawn from the dictionary (Slocum, to

73

appear), These templates serve as the major portion of a modular
"generation grammar,"” with the remainder in ths form of heuristic

tunctions for construeting syntactic constituents,

NOUN PHRASES

What to {nclude in a noun phrase should be another matter
for the digscourse module to judge, There are no well=formulated
ruljes accounting for anaphora in English; indeed, there are ¢gew
velleestablished parameters other than that the hearer must be
able to resolve the (pro)nouns to their referents, The Speaker
should employ anaphora {n order to avoid repetition, but only if
his model of the hearer indicateg that the hearer can resolve the
ambiguity. There are some low=power pronominalization rules that
couyld be directly incorporated in a generator =- reflexivization,
for example., Nevertheless, it is important to realize that when
a generator is unavare of the conversational context, it 8should
not independently decide how to generate noun phrases) it can
only decide when to do 80, This situation has not been
unjversally recognized, but {t {s beComing increasingly clear
that a digcourse module mugt be consulted uuring the generation
phase, The discourse module will not know ahead of time what NPs
are to be produced unless Lt performs many of the same operations
that the generator would do anyway, Yet the context=senslitive
decision strategy may have to resort to Such meaSures as
disamblguating the proposed output using the model of the hearer
in order to determine what anaphora {8 resolvable, It 1is

unreasonable to incorporate this strategy in the generator, since

T4

tor many reasons it must be part of the discourse module,

Therefore the generator should pass anyY "noun" constituent
to the discourse module (perhaps with its recommendation about
hov to produce the constituent); the module must determine i{f a
pronoun or bare noun is ambiguous to the hearer, and, if so, what
to add to the noun in order to make the desired referent clear,
In the current SRI system, noun patterns (Slocum, toc appear) are
used to control noun phrase generation, Much like verb patterns,
noun patterns order the constituents in the phrase and indicate
how each constituent ig to be generated by naming a function to
be called with the network constituent?

(C(DET) (AdS5 QUAL) (Ad§ SIZE) (Ad3y SHAPE) (Ad4j COLOR) (N)l
Patterns like this are distributed about the network hilerarchy;
in the future, the discourse module will decide for each pattern

constituent vhether it i{s to appear i{n the phrase,

HEURISTIC RULES

Rornby describeg three basic posf{tions for adverbs in the
cleuse: "front"™ position, "mid" position, and "end" position,
Front position advernhe ocecur before the supject: "Yesterday he
vent homey from there he took & taxi{," The interrcgative adverbs
(e.g, how, when) are typiceally constrained to frent Ppositiong
others may appear there for purposes of emphasis or contrast,

Mid position adverbs occcur with the verb (string)y 1f there
are modal or auxiliaery verbs, the adverpb occurs after the £irst
one, Otherwise the adverb will appear before the verb, except

for "unstressed” finites of be, have, and doi! "we often go

75

there®; "she 1is typically busy®”; "he is stil] waiting,”

End position adverbs occur atter the verb and after any
direct or indirect object present, While relatively few clauses
have mere than one adverb in front position or more than one in
nid position, it is common for several adverbs to appear in end
position 4in the same c¢lause: "theY play the plano poorly
together®,

Adverhials of time (answering the question, "when?") ysually
eccur in end position, but may appear {n front position for
emphasis or contrast. Adverbials of frequency (ansvering the
question, "howW often?”) can be 8plit into two groups, The first
group is composad of single~word adverbs that typically occur In
mid pogition but also may be in end position; the second is
composed o0f multiple~word phrases that appear in end pogition or,
less frequently, in front position. Adverbs of duration ("[for]
how long?") usually have end position, with £ront position for
emphasi{s or contrast, Adverhs of place and direction normally
have end position, Adverbs of degree and manner have mid or end
position, depending on the adverb,

Along with guch rules concerning the positions of various
types of adverbs, there pust be a mechanism to order the adverbs
that are to occur in the "same® position, There are some
heuristicsy among adverbials of time (or place) the smaller unit
is usually placed first, unless it is added as an atterthoughty
"the a&army attacked the Vvillage In force on a hot August

afternoon, just after silesta", Adverblals of place and direction

76

usually precede those of frequency, whieh in turn precede thosge
of time,

These rules are implemented in ¢the same routine ¢that
produces the verb; when & template (s first interpreted == much
&5 & sequence of function calls == the "Vact" or "Vpas" keys are
ignored, Once the subject, object(s) and complement(s) indicated
by the template are generated, this "clean up" routine is called.,
It employs the heuristics described above to add the adverbial
constituents and verb, then concatenates the constituents to

produce a complete Cclauvse,

DISCUSSION

In theory, the set of possible English sentences is
intinite, The obvious question then arises, "If one tries to
account for them with templates; wen t there be an Iinfinite
number of templates?" The simple answer {g, "No, for some of the
same reagons that allow & ¢finite grammér to generate an infinite
number of strings." One can produce gentences of arbitrary length
by (1) arbitrary embedding, and (2) arbitrary conjunction, One
does not do so by including erbitrary numbers of distinct case
arguments, Even 80 the number of basic patterns could be
extremelyY large, Evidence, hovever, {8 to the contrary: the
eventual number of templates would appear to be severa) times the
number of patterns, owing to the substitution of particular
Prepositions for "prep"™ {(n the syntactic patterns, and the
assignment of different cage nameg to a particular constituent

depending on the particular verb used,

77

REFERENCES

Deutsch, Barbara G, Establishing Context in Tasgsk=0Oriented
Dialogs, Presented at the Thirteenth Annual Meeting of the
Assocjiation for Computational Linguisties, Boston, Massachusetts,
30 October = | Ngvember 1975,

Goldman, Nell M, Computer Generation of Natural Language
from a Deep Conceptual PRBase. AI Memo 247, Artificial
Intelligence Laboratory, 8tanford University, Stanford,
Cajlfernia, 1974,

Gordon, David, and Lakot¢, George, Conversational
Postulates, S8yntax and Semantics, Volume 33 Speech Acts, Edited
by Peter Cole and Jerry L, Morgan, Academic Press, New York,
197S.

Hendrix, Gary G, Expanding the Utility of Semantic Networks
through Partitioning, Advance Papers of the Fourth International
Joint Conference on Artificlal Intelligence, Thilisi, Georgla,
USSR, 3«8 September 1975, 115-121,

Hornby, Ae 8.4 Gaterby, E, Y,sand Wakefie)ld, H, The
Advanced Learner’s Dictiocnary of Current English, Oxford Press,
London, 1948,

Hornbys A, S A Guide to Patterns and Usage {n English,
Quford Press, London, 1954.

Ritea, H, Barry, Automatic Speech Understanding Systems,
Proceedings, Eleventh Annual IEEE Computer Sociaty Conference,
Washingteon, D, C., 9=11 September 197%,

Simmong, Robert F,, and Slocuns Jonathan, Generating
English Discourse f£rom Semantic Networks, Communications of the
ACH, 1972, 1%, 891=905%,

glocuym, Jonathan, Question Answering via Canonical YVerbs
and Semantic Models: Generating English from the Model,
Technical Report NL=13, Department of Computer Scliences,
Universlty of Texas, Austin, Texas, Janovary 1973,

8locum, Jonathan, Verb Patterns and Noun Patterns in

Englisht QA Case Analysis, Artificial Intelligence Center, S8RI,
Menlo Park, California, (in preparation),

Walker, Donald, E,y et al., Speach Understanding Research,
Annual Report, Project 3804, Artificial Intelligence Center,
Stanford Regsearch Institute, Menlo Park, California, June 1375,

American Journal of Computational Linguistics microfiche 33 : 78

USING PLANNING STRUCTURES TO GENERATE STORIES

JAMES R. MEEHAN

Yale University
New Haven, Connectiuct 06511

ABSTRACT

TALE-SPIN is & program which makes up stories by using planning
structures as part of its world knowledge. Planning structures
represent goals and the methods of achieving those goals.
Requirements for a particular method depend on static and dynamic
facts about the world. TALE-SPIN changes the state of the world
by creating new characters and rrecenting obstacles to goals.
The reader / listener makes certain plot decisions during the
telling of the story. The story is generated using the notation

of Conceptual Dependency and is fed to another program which

translates it into English.

INTRODUCTION TALE~-SPIN 1is a computer program which makes up

stories about characters who plan how to solve certain problems

This work was supported in part by the Advanced Research
Projects Agency of the Department of Defense and monitored by

the Office of Naval Research under contract N00014-75-C-1111.

79

and then carry out their plans. The planning procedures interact
with a data base of knowledge about other characters and objects
in the world, memory, and the personal relationships which exist
between characters. The stories are represented in Conceptual
Dependency and are passed to a program which expresses them in
English. The reader is asked to make certain decisions about the

story during the process of generation. Here is an example.

JOE BEAR WAS FAMISHED. HE DECIDED HE WOULD BE FULL IF HE
ATE SOME HONEY. HE WANTED TO FIND OUT WHERE THE HONEY WAS.
HE THOUGHT THAT IRVING BIRD WOULD TELL HIM WHERE THE HCNEY
WAS.,

JOE BEAR WALKEDP TO THE TREE WHERE IRVING BIRD WAS. HE
ASKED IRVING BIRD IF HE WOULD TELL HIM WHERE THE HONEY WAS.

>> DECIDE: DOES *IRVINGBIRD* AGREE? *NO

IRVING BIRD REFUSED TO TELL JOE BEAR WHERE THE HONEY WAS.
JOE BEAR DECIDED IRVING BIRD WOULD LIKE HIM TO GIVE THE WORM
TO HIM. JOE BEAR ASKED IRVING BIRD IF HE WOULD TELL HIM WHERE
THE HONEY WAS IF HE GAVE THE WORM TO HIM.

>> DECIDE: DOES *IRVINGBIRD* AGREE? *YES

HE THOUGHT THAT HE WOULD LIKE JOE BEAR TO GIVE IT TO HIM.
HE WANTED TO FIND OUT WHERE THE WORM WAS, HE THOUGHT THAT
IRVING BIRD WOULD TELL HIM WHERE THE WORM WAS. JOE BEAR ASKED
IRVING BIRD IF HE WOULD TELL HIM WHERE THE WORM WAS.

>> DECIDE: DOES *IRVINGBIRD* AGREE? *YES

IRVING BIRD DECIDED HE WOULD TELL JOE BEAR WHERE THE WORM
WAS. IRVING BIRD TOLD HIM IT WAS AT A PATCH OF GROUND.

HE WALKED TO THE PATCH OF GROUND WHERE WORM WAS. HE TOOK
THE WORM HE WALKED TO THE TREE WHERE IRVING BIRD WAS. HE
GAVE THE WORM TO IRVING BIRD.

>> DECIDE: DOES *IRVINGBIRD* KEEP HIS PROMISE? *NO

HE REFUSED TO TELL JOE BEAR WHERE —THE HONEY WAS. JOE
BEAR TOLD IRVING BIRD HE IS GOING TO STRIKE HIM IF HE DOES NOT
TELL HIM WHERE THE HONEY WAS.
>> DECIDE: DOES *IRVINGBIRD* IGNORE THE THREAT? *NO

IRVING BIRD DECIDED HE WOULD TELL JOE BEAR WHERE THE
HONEY WAS. IRVING BIRD TOLD HIM IT WAS AT THE BEEHIVE.

80
JOE BEAR THOUGHT THAT HENRY BEE WOULD GIVE THE HONEY TO
HIM. JOE BEAR WALKED TO THE BEEHIVE WHERE HENRY BEE WAS. HE
ASKED HENRY BEE IF HE WOULD GIVE THE HONEY TO HIM.
>> DECIDE: DOES *HENRYBEE* AGREE? *YES

HENRY BEE DECIDED HE WOULD GIVE IT TO JOE BEAR. HENRY
BEE GAVE IT TO JOE BEAR. HE ATE IT. HE WAS FULL. THE END.

Here is a story which TALE-SPIN generates which the
translator is not yet capable of producing in English:

JOE BEAR WAS HUNGRY. HE THOUGHT THAT IRVING BIRD WUOLD

TELL HIM WHERE SOME HONEY WAS. HE WALKED TO THE TREE WHERE

IRVING BIRD WAS. HE ASKED IRVING BIRD TO TELL HIM WHERE THE

HONEY WAS. IRVING BIRD TOLD HIM THE HONEY WAS IN A [certain]
BEEHIVE.

JOE BEAR WALKED TO THE BEEHIVE WHERE THE HONEY WAS. HE
ASKED HENRY BEE TO GIVE HIM THE HONEY. HENRY BEE REFUSED.
JOE BEAR TOLD HIM WHERE SOME FLOWERS WERE. HENRY BEE FLEW

FROM THE BEEHIVE TO THE FLOWERBED WHERE THE FLOWERS WERE. JOE
BEAR ATE THE HONEY.

HE WAS VERY TIRED. HE WALKED TO HIS CAVE. HE SLEPT.
THE END.

TALE~-SPIN starts with a small set of characters and various
facts about them. It also has a set of problem-solving
procedures which generate the events in the story. Many
decisions have to be made as the story is being told. Some are
made at random (names of characters, for example); others depend
on the relationships between characters (whom one asks for
information, for example); others are made by the reader
(whether a character keeps a promise, for example).

TALE-SPIN dgenerates sentences using the representation
system of Conceptual Dependency (Schank 1975). Some of the
Conceptual Dependency (CD) structures are passed on to a program
which expresses them in English. (The original version of that
program was written by Neil Goldman for the MARGIE systen. The

present version has been modified by Walter Stutzman and Gerald

81

De Jong.) The sgentences which are not passed to the translator
are those which represent easily inferred ideas. Neither program
yet worries about the style of expression; that is, we worry
about whether to say a newly generated piece of the story, but
not much about how to say it.

A TALE-SPIN story involves a single main character who
solves some problem. To make the process interesting, obstacles
are introduced, some by the reader if he chooses, and some at
r andom. For instance, the reader’s decision that Irving Bird is
not going to tell Joe Bear what he wants to know produces an
obstacle to Joe Bear's plan to find something out. Some
obstacles are created when certain scenes are included in the
story. For instance, the initial world state has no bees in it,
but when it comes time in the story to conjure up some actual
honey, we do so by creating a whole scene which includes some
honey in a beehive in a tree and a bee who owns that honey. The
bee may or may not be at home. If he is, Joe Bear is going to
have another obstacle in his plan when he gets to the beehive.

The story is the narration of some of the events which occur
during the solution (or non-solution) of the problem. (That is,
more things happen in the solution of a problem than a
storyteller says or needs to say.) TALE-SPIN differs from other
problem-solving systems in several ways: (1) the ©problems it
solves are those requiring interaction with other, unpredictable
characters rather than with a data base of theorems or blocks or
circuits; (2) the world inside TALE-SPIN grows: new characters

are created with unpredictable effects on the story; (3)

82

obstacles are deliberately introduced; (4) an "unsuccessful”

story, one in which the problem is not solved, can be Jjust as

interesting as a “"successful" one.

PLANNING STRUCTURES Planning structures are what we use to

organize knowledge about planful activity, which is represented
in CD by a chain of causes and effects. The planning structures
include delta-acts, planboxes, packages, scripts, sigma-states,

rho-states, and pi-states.

A delta-act is used to achieve a particular goalstate,

Delta-prox (written here as APROX) is the procedure for becoming
proximate to some location. A delta-act is defined as a goal, a
set of planboxes, and a decision algorithm for choosing between

planboxes.

A planbox is a particular method for achieving a goalstate.
All the planboxes under a delta-act achieve the same goalstate.
Each planbox has a set of preconditions (some of which may be
delta-acts), and a set of actions to perform. "Unconscious"
preconditions are attached to planboxes which would never occur
to you to wuse. If you're trying to become proximate to X, you
don’t even think about persuading X to come to you when X 1is an
inanimate object. "Uncontrollable" preconditions cannot be made
true if they’'re not already true. (The assumption is that they
are sometimes true.) "Plantime" preconditions are the things you
worry about when you’re making up the plan. You don‘t worry
about "runtime" ©preconditions wuntil you‘re executing the plan.
("Planning” is a mental activity. PLAN is, in fact, one of the

primitive ACTs of CbD. "Executing a plan" is performing a

83
logically structured sequence of actions to achieve the goal of
the plan.) If I'm planning to get a Coke out of the machine
upstairs, I worry about having enough money, but I don't worry
about walking up the stairs until I'm at the stairs. That the
machine actually has some Coke is an uncontrollable runtime
precondition: I don‘t worry about it until I get there, and
there’s nothing I can do if it is empty when I get there.

A package is a set of planboxes which lead to a goal act
rather than state. The PERSUADE package, for instance, contains
planboxes for X to persuade Y to do some act 2. The planboxes
include asking, giving 1legitimate reasons, offering favors in
return, threatening, and so on.

Goalstates come in various flavors. There are the goals
which are associated with the delta-acts: the goal of dPROX is
to be somewhere, the goal of AKNOW is to find out the answer to
some question, the goal of ACONTROL is to possess something. But

there are also goals of satiation, called sigma-states. For

example, sHUNGER organizes the knowledge about satisfying hunger
(invoking 4CONTROL of some food, eating). TALE-SPIN also uses
sigma-state knowledge in the bargaining process; offering
someone some food in return for a favor is legitimate since it
will satisfy a precondition for sHUNGER. There are also goals of

preservation, called pi-states, which are most interesting when

they are in danger of being violated. The logic of the THREATEN
planbox in the PERSUADE package, for example, derives from the

fact that physical violence conflicts with pHEALTH.

A SAMPLE DELTA-ACT: dPROX TALE-SPIN does not include all nine

84

delta-acts described by Abelson (1975). It contains the three
which closely correspond to primitive acts: dPROX (PTRANS),
dCONTROL (ATRANS), dKNOW (MTRANS).
Here is an outline of 4PROX:
dPROX(X,Y) -- X wishes to be near Y

Planbox @: if X is already near Y, succeed.
Planbox 1l: X goes to ¥

uncontrollable precondition: can X move himself?

plantime precondition: 4RNOW(location of Y)

runtime precondition: ALINK(location of Y)

action: PTRANS to location of Y

runtime precondition: is Y really there? (We may have

gotten false information during the AKNOW.)

Planbox 2: Y comes to X

unconscidus precondition: is Y animate?

uncontrollable precondition: is Y movable?

action: PERSUADE Y to PTRANS himself to X (PERSUADE package)
Planbox 3: Agent A brings X to Y

uncontrollable precondition: is X movable?

action: X gets AGENT to bring X to Y (AGENCY package)
Planbox 4: Agent A brings Y to X

unconscious precondition: is Y animate?

uncontrollable precondition: is Y movable?

action: X gets AGENT to bring Y to X (AGENCY package)
Planbox 5: X and Y meet at location 2

unconscious precondition: is Y animate?

uncontrollable precondition: is Y movable?

85

actions: PERSUADE Y to PTRANS himself to Z and dPROX(X,2)

THE DATA BASE Planning structures are essentially procedural.

The non-procedural data base used by the planning structures is
divided into five classes.

1. Data about individual PPs (Picture Producers, nouns)
where applicable: heights weight; where their home is; who
their acquaintances are.

2. Data copmon to classes of PPs (e.g., data common to all
birds) where applicable: what they eat; what their goals
(sigma-states) are; whether they are animate (capable of
MBUILDing), movable, self-movable; how théy move around.

3. Sigma-state knowledge indicating how to achieve a
sigma-state and what the plantime preconditions are that someone
other than the planner can achieve, This 1is wused in the
bargaining process. Joe Bear offers to bring Irving Bird a worm
because dCONTROL(FOOD) is a plantime precondition for sHUNGER
which Joe Bear can achieve for Irving Bird. There are no
plantime preconditions for sREST that he can achieve for 1Irving
Bird (except maybe to leave him alone).

4. Memory: what everybody knows (thinks, believes);: what
Joe Bear knows; what Joe Bear thinks Irving Bird knows; etc.
Planbox 0 of JdKNOW, for example, accesses Memory to test whether
Joe Bear already knows the answer to the guestion being asked, or
whether it is public knowledge. Since both the question and the
facts in Memory are represented in CD, the pattern match is very

simple, taking advantage of CD’s canonical representation of

meaning.

86

5. Personal relationships. The relationship of one
character to another is descibed by a point on each of three
scales: COMPETITION, DOMINANCE, and FAMILIARITY. Scale values
range from =18 to +18. The relation "is a friend of" is
represented by a certain range on each of the three scales. The
relation "would act as an agent for" 1is represented by a
different range. The sentence "Joe Bear thought that Irving Bird
would tell him where the honey was"” comes from the "Ask a Friend"
planbox of dKNOW. There is a procedure which goes through a list
of Joe Bear's acquaintances and produces a list of those who
qualify as "friends", i.e., those who fit somewhere within the
"friend" range.

Relations are not symmetric: Joe Bear may think of Irving
Bird as his friend, so he might ask him where the honey is, but
Irving Bird may not think of Joe Bear as his friend at all, in
which case he might refuse to answer Joe Bear.

Relatiomships can change. If Joe Bear becomes sufficiently
aggravated at his "friend" 1Irving Bird and has to threatén to
bash him in the beak in order to get him to tell him where the
honey is, then the relationship between them deteriorates.

We plan to extend this feature to describe a character’s
"default" relationship: how he relates to total strangers. This
would not necessarily be the point (6,6,0) but rather some point
which would be used to give a rough indication of the character’s
"persohality®". Big bad Joe Bear might rate at (+6,+9,+4), where

small meek Bill Worm might rate at (-6,-10,-4).

Changing a relationship is a type of goal we haven't vyet

87

considered in much detail, although goals of relationships

(rho-states) clearly exist. The procedure for getting someone to
like you (rLIKE) might contain planboxes for ATRANSing gifts,
MTRANSing sweet nothings, etc., in addition to changing your own
feelings toward that person so that if he (she) asks you to do
something, you don’t refuse.

Information gets into the data base in several ways. Memory
data gets produced directly by the planning structures. Changes
in relations are side-effects of the present set of planning
structures. But things have to start somewhere. There is a
function CREATE (X) which invents a new item of ¢type X (e.g.,
bear, flower, berry). Associated with each type of item is a
small procedure called a picture which invents the desired item
and others as reguired. For example, when we create some honey,
we also create a beehive, a tree, and a bee. The honey 1is
"owned" by the bee and is inside the beehive which is in the
tree. The bee may or not be at home. Randomly chosen names,
heights, weights, etc., are attached. All this data is then
added to Memory.

The CREATE function is called when needed; remember that
TALE-SPIN models the process of making up a story as you go
along. We will now follow, in detail, the production of the
second sample story.

CREATE a bear, which invokes a picture procedure which
invents a bear. Assume the bear is named Joe; although since the
name is chosen at random from a list of first names, it is just

as often Irving. A cave is also invented, and has Joe in it.

88

Joe’s location becomes public knowledge.

CREATE a bird, named Irving, and a tree which is his home.
Irving s location is also now public knowledge.

Assert that Joe is hungry. This fact enters Joe’s Memory.
We also "say" this; that is, we pass it to the English
translator which then produces the sentence "“JOE BEAR WAS
HUNGRY".

Invoke sHUNGER.

Choose at random a food that bears eat: honey. Assert that
Joe 1is now planning to achieve the goal (sigma-state) of
satisfying his hunger. Assert that he has decided that eating
the food can lead to the achievement of his goal.

SHUNGER calls dCONTROL (honey). This forms a new goal,
namely, that Joe have some honey. d4CONTROL s "Planbox 6" asks
Memory if the goal is already true: does Joe already have some
honey? The answer comes back: no. A plantime precondition is
to know the location of some honey, so ACONTROL calls dKNOW(where
is honey?). (The question is represented in CD, not English.)

dRKNOW forms the new goal. dJdEKNOW s "Planbox @" asks Memory
whether Joe knows the 1location of any honey. Memory says no.
Planbox 1 tests whether the question <¢an be answered by
consulting a standard reference (e.g., "What time is it?"). That
fails. Planbox 2 tesls whether the question requires expertise:
no. Planbox 3 tests whether this is a "general information”
question. It is, so we assert that Joe is planning to answer

this question using Planbox 3 ("Ask a Friend").

Planbox 3 starts. Choose a friend: Irving. dEKNOW calls

89

the PERSUADE package to try to get Irving to answer Joe’s
question.

PERSUADE asks Memory whether Joe thinks- that Irving cannot
answer the question., Answer: no. 1Irving is a "friend", so we
try the ASK planbox. Assert that Joe thinks that Irving will
tell him where the honey is. PERSUADE calls dPROX(Irving), since
Joe needs to speak to Irving.

dPROX asks Memory whether Joe 1is already near 1Irving.
Memory says no. Planbox l: 1is Joe self-movable? Yes. Assert
that Joe is planning to be near Irving by going there himself.
dPROX calls dKNOW(where is Irwving?).

dKNOW s "Planbox 0" asks Memory whether Joe already Kknows
where 1Irving is. The answer comes back: vyes, Irving is in a
certain tree. AdKNOW returns this to dPROX. (We will omit future
references to "Planbox 4".)

dPROX asserts that Joe walks to the tree where 1Irving is.
We ask Memory whether Irving is actually there. He is, so dPROX
has achieved its desired goal; his change in location is added
to Memory. dPROX returns to PERSUADE.

Joe asks Irving where some honey is., The reader now gets to
decide whether 1Irving agrees to do s¢. Assume th& reader says
yes. We ask Memory whether Irving actually knows where any honey
is. If he did, we would have Irving tell him, but he doesn’t, so
we CREATE some honey: a storyteller can create solutions to
problems as well as obstacles! Some honey is invented, along
with a beehive, a tree, and a bee (Henry) who is at home. 1Irving

tells Joe that the honey is in the beehive. ASK succeeds, so

90
PERSUADE succeeds, so dKNOW sutceeds: Joe knows where some honey
is.

Back in AdCONTROL, we ask Memory whether [Joe thinks that]
anyone owns the honey. Memory says that Henry does, so
dCONTROL ‘s Planbox 1 ("Free for the taking") fails. Planbox 2 is
to PERSUADE Henry to give the honey to Joe.

Given no relation between Joe and Henry (they don’t know
each other), the only planboxes in PERSUADE which can be used are
ASK and INFORM REASON.

We try ASK first. This calls dPROX{Henry) which succeeds
since Joe knows where Henry is; we omit the details here. Joe
asks Henry to give him the homey, and the reader decides that
Henry refuses.

We try INFORM REASON next. We choose a goal of Henry’'s and
build a causal chain backwards from the goal. For example, one
of Henry s goals is to "eat" flowers. (TALE-SPIN thinks that
what bees: do to flowers is eguivalent to eating.) 1In order to
eat a flower, you have to "control" a flower, which results from
someone (possibly you yourself) ATRANSing the flower to you. We
test whether what Joe is trying to PERSUADE Henry to do matches
ATRANSing a flower. It doesn’t. (Joe is trying to PERSUADE
Henry to ATRANS the honey to him.) We then consider that in
order to ATRANS a flower, you.have to be near the flower, which
results from someone PTRANSing you to the flower. Does this
match? No. We repeat this process a few times, trying to
construct a short inference chain which - connects., what Joe is

trying to persuade Henry to do with one of Henry’'s goals. INFORM

91

REASON fails, and we return to dCONTROL.

The next Planbox is called "Steal". We ask Memory whether
Henry is home; 1if he weren't, Joe would simply take the honey.
But Memory tells us that Henry is home, so STEAL calls PERSUADE
to get Henry to leave home; that is, Joe is now going to try to
persuade Henry to PTRANS himself from the hive.

In the context of STEAL, the ASK planbox is not used. Joe
tries INFORM REASON again and succeeds in producing the following
chain: we get to the idea of someone PTRANSing himself to a
flower again as we did before, but we notice that this does match
what we are trying to persuade Henry to do: the connection 1is
that Henry will PTRANS himself from the beehive to the flower.
Joe now considers the precondition for Henry's PTRANSing himself
to the flower, namely, that Henry has to know where the flower
is. Memory does not indicate that Joe thinks that Henry knows
where a flower 1is, nor does Joe know where a flower is, but
rather than invoke dKNOW (where is a flower?), we CREATE a flower:
this is 1legitimate in a plan to steal something. Joe now tells
Henry that there is a flower in a certain flowerbed, and then
asks Henry if he would like to fly to that flower. Henry agrees
and flies away. PERSUADE succeeds, and returns to 4dCONTROL.

Joe now takes the honey from the hive, so dCONTROL succeeds
and returns to sHUNGER. Memory is modified to indicate that Joe
knows that he has the honey, but that Henry does not.

Joe now €ats the honey, and has achieved the sigma-state of

not being hungry. But, when bears eat, they become tired, so

SREST is invoked.

92

SREST is very short. It reguires a dPROX(cave), which is
easily achieved, and then Joe goes to sleep.
Since the main goal has been achieved, and the goal produced

as a conseqguence of that goal has also been achieved, the story

ends.

What distinguigshes stories from simple seguences of events?
Coherency is important: there has to be a logical flow from one
event to the next. This is represented in CD as a chain of acts
which result in states which enable further acts and so on.
Interest is important: something interesting or unusual has to
happen or else the reader will begin to wonder what the point of
the story is. TALE-SPIN creates impediments to goals, on the
assumption that the overcoming of obstacles can make an
interesting story. "One day Joe Bear was hungry. There was a
jar of honey right next to him. He ate it. The end" 1is not a
story. It shouldn’t be that easy.

On the other hand, it shouldn’t be too hard either. In
theory at least, there 1is a cost-effectiveness calculus which
people employ when deciding how much energy to expend on a
subgoal, based on how much the goal is worth to them. This
process prevents the plans from being too complicated.

As the story is generated, various plot decisions have to be
made. Some decisions are made at random, others are made by the
reader. When Joe Bear threatens Irving Bird because Irving Bird
won't tell him where the honey is, the reader gets to decide
whether Irving Bird is going to ignore the threat.

We use planning structures because any program which reads

93

or writes a story, whether of the folktale variety or the New
York Times variety, must have a model of the 1logic of human
activity. It might be easier to simulate the generation of a
highly stylized form of story, as Klein (1974) has done using
Propp’'s analysis of a class of Russian fairy tales, but there is
little generality there. One could use any of the well-known
problem-solving systems like MICRO-PLANNER, but the story is the
proof procedure, and the procedure used there does not correspond
to my conception of how people solve problems. That’'s not a
criticism of MICRO-PLANNER as a problem-solver, but only as a
model of human problem-solving.

User interaction was included for two reasons. First, the
interactive feature now serves as a heuristic for placing bounds
on the complexity of the story. Beyond, some number of obstacles
to the goal, a story becomes a kind of joke. Second and more
important, extensions to TALE-SPIN will include more

sophisticated responses than the present yes/no variety.

THE FUTURE OF TALE-SPIN. There are a 1lot of things that

TALE-SPIN doesn’t do yet that would improve it as a storyteller.
Here are some of the theoretical problems we will be working on
in the immediate future. (1) Bargaining, as it exists now in
TALE-SPIN, is a pretty one-sided affair, with the main character
making all theé proposals. Irving Bird 1is just as likely to
suggest that Joe Bear go get him a worm as Joe is to offer to do
S0. Counter-proposals are certainly common enough. (2) Future
stories should include planning on the part of more than one

character. The present stories are all "about" the bear, and

94

only incidentally involve the bird and other characters. The
stories are more concerned with reaction than interaction. (3)
For every plan, there may be a counter-plan, a plan to block the
achievement of a goal: a plan for keeping away from something or
someone; a plan not to find out something, or to be convinced
that it isn’t true; a plan to get rid of something you own. (4)
How much of a plan do people consider in advance? We have made
some efforts in this area by making the distinctions between
kinds of preconditions. Certainly the most important improvement
here will be the cost-effectiveness reasoning. (5) The theory of
telling stories (what to say) now implemented in TALE-SPIN is to
express violations of sigma-states ("Joe Bear was hungry"),
physical acts, and those mental acts which provide motivation or
justification for later events. The reader is assumed to be able
to infer the rest. This seems to work reasonably well for the
present simple stories, but may have to be modified to suit

longer, more complicated stories,

REFERENCES

Abelson, R. P. (1975). Concepts for representing mundane reality
in plans. In D, Bobrow and A. Collins, eds. Representation

End understgndingi Studies in cognitive science. Academic
Press, New York,

Klein, S. et al (1974). Modelling Propp and Levi-Strauss in a
meta-symbolic simulation system. Technical Report 226,
University of. Wisconsin at Madison.

Schank, R. C. (1975). Conceptual Information Processing.
American Elsevier, New York. This includes contrigutions by
Neil M. Goldman, Charles J. Rieger III, and Christopher K.
Riesbeck.

Schank, R. C. and Abelson, R. P. (1975). Scripts, plans and

knowledge. 1In Proceedings of the 4th International Joint
Conference on Artificial Intelligence.

FEEEE EEEK

Er
13
Fx

N

“TMICROCOPY RESOLUTION ‘TEST CHART
NATw A BUREAY-DF STA«"DARDS—l_QG}A '

	Proceedings_13th_Annual_Meeting_2_Language_Generation_Systems
	End Page

