
Coping w i th Syntac t ic A m b i g u i t y
o r

H o w to Put the Block in the Box on the Table 1

Kenneth Church
Ramesh Patil

L a b o r a t o r y fo r C o m p u t e r S c i e n c e
M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y

C a m b r i d g e , M A 0 2 1 3 9

Sentences are far more ambiguous than one might have thought. There may be
hundreds, perhaps thousands, of syntactic parse trees for certain very natural sentences of
English. This fact has been a major problem confronting natural language processing,
especially when a large percentage of the syntactic parse trees are enumerated during
semantic/pragmatic processing. In this paper we propose some methods for dealing with
syntactic ambiguity in ways that exploit certain regularities among alternative parse trees.
These regularities will be expressed as linear combinations of ATN networks, and also as
sums and products of formal power series. We believe that such encoding of ambiguity will
enhance processing, whether syntactic and semantic constraints are processed separately in
sequence or interleaved together.

M o s t pa r se r s f ind the set of p a r s e t r ees b y s t a r t i ng
wi th the e m p t y set and add ing to it each t ime t hey f ind
a new poss ib i l i ty . W e m a k e the o b s e r v a t i o n tha t in
ce r t a in s i tua t ions it w o u l d be much m o r e e f f i c i en t to
w o r k in the o t h e r d i r ec t ion , s t a r t i ng f rom the un ive r sa l
set (i .e, the set of all b i n a r y t r ees) a n d ru l ing t r ees ou t
when the p a r s e r dec ides t ha t t h e y c a n n o t be parses .
R u l i n g - o u t is eas ie r when the set of pa r se t rees is c los-
er to the un ive r sa l se t and ru l ing- in is eas ie r when the
set of pa r se t rees is c loser to the e m p t y set. Ru l ing -
ou t is p a r t i c u l a r l y su i t ed fo r "'every way ambiguous"
c o n s t r u c t i o n s such as p r e p o s i t i o n a l ph ra se s tha t have

jus t as m a n y pa r se t rees as t he re are b i n a r y t r ees ove r
the t e rmina l e l ements . Since e v e r y t ree is a pa r se , the
p a r s e r d o e s n ' t have to rule any of t h e m out .

In some sense , this is a f o r m a l i z a t i o n o f an idea
tha t has b e e n in the l i t e r a tu re fo r some t ime. T h a t is,
it has b e e n n o t i c e d for a long t ime tha t these sor t s o f
v e r y a m b i g u o u s c o n s t r u c t i o n s a re v e r y d i f f i cu l t fo r

1 This research was supported (in part) by the National Insti-
tutes of Health Grant No. 1 P01 LM 03374-02 from the National
Library of Medicine, and by the Defense Advanced Research Pro-
jects Agency (DOD) monitored by the Office of Naval Research
under Contract No. N00014-75-C-0661.

mos t pa r s i ng a lgo r i thms , bu t (a p p a r e n t l y) no t for p e o -

ple . Th is o b s e r v a t i o n has l ed s o m e r e s e a r c h e r s to
h y p o t h e s i z e a d d i t i o n a l p a r s i n g m e c h a n i s m s , such as

p s e u d o - a t t a c h m e n t (C h u r c h 1980, pp . 6 5 - 7 1) 2 a n d

p e r m a n e n t p r e d i c t a b l e a m b i g u i t y (Sage r 1973) , so tha t

t he p a r s e r c o u l d " a t t a c h al l w a y s " in a s ingle s tep .

H o w e v e r , these m e c h a n i s m s have a lways l a c k e d a p re -

cise i n t e r p r e t a t i o n ; we will p r e s e n t a much m o r e fo r -

mal w a y of cop ing wi th " e v e r y w a y a m b i g u o u s " g r a m -

m a r s , d e f i n e d in t e r m s o f Catalan numbers (K n u t h

1975, pp. 3 8 8 - 3 8 9 , 5 3 1 - 5 3 3) .

1. Ambiguity is a Practical Problem

S e n t e n c e s a re fa r m o r e a m b i g u o u s t h a n one migh t

have though t . O u r e x p e r i e n c e wi th the EQSP p a r s e r

(Mar t i n , Chu rc h , and Pa t i l 1981) i nd i ca t e s tha t t he re

m a y be h u n d r e d s , p e r h a p s t h o u s a n d s , o f s y n t a c t i c

pa r se t rees for ce r t a in ve ry n a t u r a l s e n t e n c e s of E n g -
lish. F o r e x a m p l e , c o n s i d e r the f o l l o w i n g s e n t e n c e

wi th two p r e p o s i t i o n a l ph rases :

2 The idea of pseudo-attachment was first proposed by Mar-
cus (private communication), though Marcus does not accept the
formulation in Church 1980.

Copyright 1982 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 3 6 2 - 6 1 3 X / 8 2 / 0 3 0 1 3 9 - 1 1 $03 .00

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 139

Kenneth Church and Ramesh Patil Coping with Syntactic Ambiguity

(1) Put the block in the box on the table.

which has two interpretat ions:

(2a) Put the block[in the box on the table]
(2b) Put [the block in the box] on the table.

These syntact ic ambiguit ies grow "combina to r i a l l y "
with the number of preposi t ional phrases. For exam-
ple, when a third PP is added to the sentence above,
there are five interpretat ions:

(3a) Put the block [[in the box on the table] in the
kitchen].

(3b) Put the block [in the box [on the table in the
kitchen]].

(3c) Put [[the block in the box] on the table] in the
kitchen.

(3d) Put [the block [in the box on the table]] in the
kitchen.

(3e) Put [the block in the box] [on the table in the
kitchen].

When a fourth PP is added, there are four teen trees,
and so on. This sort of combinator ic ambiguity has
been a major p rob lem confront ing natural language
processing. In this paper we propose some methods
for dealing with syntactic ambiguity in ways that take
advantage of regularities among the alternative parse
trees.

In part icular , we observe that enumera t ing the
parse trees as above fails to capture the impor tan t
genera l iza t ion that preposi t ional phrases are " e v e r y
way ambiguous ," or more precisely, the set of parse
trees over i PPs is the same as the set of binary trees
that can be constructed over i terminal elements. No-
tice, for example, that there are two possible binary
trees over three elements,

(4a) [... b lock ... [... box ... table ...]]
(4b) [[... block ... box ...] ... table ...]

corresponding to (2a) and (2b), respectively, and that
there are five binary trees over four e lements corre-
sponding to (3a) - (3c) , respectively.

PPs, adjuncts, conjuncts , noun-noun modif icat ion,
s tack relative clauses, and o ther " eve ry way
ambiguous" construct ions will be t reated as primitive
objects. They can be combined in various ways to
produce composi te constructions, such as lexical ambi-
guity, which may also be very ambiguous but not nec-
essarily " eve ry way ambiguous . " Lexical ambigui ty ,
for example, will be analyzed as the sum of its senses,
or in flow graph terminology (Oppenhe im and Schafer
1975) as a parallel connect ion of its senses. Structural
ambiguity, on the other hand, will be analyzed as the
product of its components , or in flow graph terminolo-
gy as a series connection.

2. Formal P o w e r Ser ie s

This section will make the linear systems analogy
more precise by relat ing con tex t - f r ee g rammars to
formal power series (polynominals) . Formal power
series are a wel l -known device in the formal language
li terature (e.g., Salomaa 1973) for developing the alge-
braic propert ies of context - f ree grammars . We intro-
duce them here to establ ish a fo rmal basis for our
upcoming discussion of processing issues.

The power series for g rammar (5a) is (5b).

(5a) NP - , .John I N P a n d N P
(5b) NP -- John + John and John

+ 2John and John and John
+ 5John and John and John and John
+ 14John and John and John and John

and John + ...

Each te rm consists of a sentence genera ted by the
g r ammar and an ambigui ty coef f ic ient 3 which counts
how many ways the sentence can be generated. For
example, the sentence " J o h n " has one parse tree

(6a) [John] 1 tree

because the zero- th coeff icient of the power series is
one. Similarly, the sentence " J o h n and John" also has
one tree because its coefficient is one,

(6b) [John and John] 1 tree

and " John and John and John" has two because its
coefficient is two,

(6c) [[John and John] and John], 2 trees

[John and [John and John]]

and " J o h n and John and John and John" has five,

(6d) [John and [[John and John] and John]], 5 trees
[John and [John and [John and John]]] ,
[[[John and John], and John] and John],
[[John and [John and John]] and John],
[[John and John] and [John and John]]

and so on. The reader can ver i fy for himself that
" J o h n and John and John and John and J o h n " has
four teen trees.

Note that the power series encapsulates the ambi-
guity response of the system (grammar) to all possible
input sentences. In this way, the power series is ana-
logous to the impulse response in electrical engineer-
ing, which encapsula tes the response of the sys tem
(circuit) to all possible input frequencies. (Ambigui ty
coeff ic ients bear a s t rong resemblance to f requency
coefficients in Fourier analysis.) All of these trans-
fo rmed represen ta t ion sys tems (e.g., power series,
impulse response, and Fourier series) provide a com-
plete descr ipt ion of the sys tem with no loss of
in format ion 4 (and no heurist ic approximat ions , for
example , search s trategies (Kaplan 1972)) . Trans-

3 The formal language literature (Harrison 1978, Salomaa
1973) uses the term support instead of ambiguity coefficient.

140 Amer ican Journal of Compu ta t i ona l Linguist ics, Vo lume 8, Number 3-4, Ju ly -December 1982

Kenneth Church and Ramesh Patil Coping wi th Syntactic Ambiguity

forms are of ten very useful because they provide a
different point of view. Certain observat ions are more
easily seen in the t ransform space than in the original
space, and vice versa.

This paper will discuss several ways to generate the
power series. Initially let us consider successive ap-
proximation. Of all the techniques to be presented
here, successive approximat ions most closely resembles
the approach taken by most current chart parsers in-
cluding EQSP (Martin, Church, and Patil 1981). The
alternative approaches take advantage of certain regu-
larities in the power series in order to produce the
same results more efficiently.

Successive approximat ion works as follows. First
we translate g rammar (5a) into the equation:

(7) NP = John + N P . and . NP

where " + " connects two ways of generat ing an NP
and " . " concatenates two parts of an NP. In some
sense, we want to " so lve" this equat ion for NP. This
can be accomplished by refining successive approxima-
tions. An initial approximat ion NP 0 is formed by tak-
ing NP to be the empty language,

(8a) NP 0 = 0

Then we form the next approximat ion by substituting
the previous approx imat ion into equat ion (7), and
simplifying according to the usual rules of a lgebra
(e.g., assuming distributivity, associativity, 5 ident i ty
element, and zero element).

(8b) NP 1 = John -t- NP 0- and . NP 0
= John + 0 . and . 0 = John

We continue refining the approximat ion in this way.

(8c) NP 2 = John + NP 1 • and . NP 1
= John + John and John

(8d) NP 3 = John + NP 2 and NP 2
= John + (John + John and J ohn) . and .

(John + John and John)
= John + John and John

+ John and John and John
+ John and John and John
+ John and John and John and John

4 This needs a qualification. It is true that the power series
provides a complete description of the ambiguity response to any
input sentence. However, the power series representation may be
losing some information that would be useful for parsing. In partic-
ular, there might be some cases where it is impossible to recover the
parse trees exactly, as we will see, though this may not be too
serious a problem for many practical applications. That is, it is
often possible to recover most (if not all) of the structure, which
may be adequate for many applications.

5 The careful reader may correctly object to this assumption.
We include it here for expository convenience, as it greatly simpli-
fies the derivations though it should be noted that many of the
results could be derived without the assumption. Furthermore, this
assumption is valid for counting ambiguity. That is, I A " B I *
I C I = I A I * IB " C I , where A , B , and C are sets of trees and
I A I denotes the number of members of A, and * is integer multi-

plication.

= John + John and John
+ 2 John and John and John
+ John and John and John and John

Eventually, we have NP expressed as an infinitely long
polynominal (5b) above. This expression can be sim-
plified by introducing a nota t ion for exponent ia t ion .
Let x i be an abbrevia t ion for multiplying x • x • ... • x,
i times.

(9) NP = John + John and John
+ 2 John (and John) 2
+ 5 John (and John) 3
+ 14 John (and John) 4
-1 - , . .

Note that paren theses are in te rpre ted dif ferent ly in
algebraic equat ions than in con tex t - f ree rules. In
con tex t - f ree rules, paren theses denote opt ional i ty ,
where in equations they denote precedence relations
among algebraic operat ions.

3. Catalan Numbers

Ambigui ty coefficients take on an important practi-
cal significance when we can model them directly
wi thout resor t ing to successive approx imat ion as
above. This can result in substantial t ime and space
savings in certain special cases where there are much
more efficient ways to compute the coefficients than
successive approx imat ion (char t parsing) . Equat ion
(9) is such a special case; the coeff icients follow a
wel l -known combina tor ic series called the Catalan
Numbers (Knuth 1975, pp. 388-389, 531-533) . 6 This
section will describe Cata lan numbers and their rela-
tion to parsing.

The first few Cata lan numbers are 1, 1, 2, 5, 14,
42, 132, 469, 1430, 4862. They are generated by the
closed form expression: 7

(10) C a t n = (2 n) - (2n
n - l)

This formula can be explained in terms of parenthes-
ized expressions, which are equivalent to trees. Cat n
is the number of ways to parenthesize a formula of
length n. There are two conditions on parenthesiza-
tion: (a) there must be the same number of open and
close parentheses, and (b) they must be properly nest-
ed so that an open parenthesis precedes its matching
close parenthesis. The first term counts the number of

6 This fact was first pointed out to us by V. Pratt. We sus-
pect that it is a generally well-known result in the formal language
community, though its origin is unclear.

7 (~) is known as a binominal coefficient. It is equivalent to
{a!/[b!(a-b)!]},

where a! is equal to the product of all integers between 1 and a.
Binomial coefficients are very common in eombinatories where they
are interpreted as the number of ways to pick b objects out of a set
of a objects.

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 141

Kenneth Church and Ramesh Patil Coping wi th Syntactic Ambigu i ty

sequences of 2n parentheses, such that there are the
same number of opens and closes. The second term
subtracts cases violating condit ion (b). This explana-
tion is e laborated in Knuth 1975, p. 531.

It is very useful to know that the ambiguity coeffi-
cients are Cata lan numbers because this observa t ion
enables us to replace equat ion (9) with (11), where
Cat i denotes the i th Cata lan number. (All summations
range f rom 0 to oo unless noted otherwise.)

(11) NP = E Cat i John (and John) t
i

The i th Catalan number is the number of binary trees
that can be constructed over i phrases. This theoret i -
cal model correct ly predicts our pract ical exper ience
with EQSP. EQSP found exactly the Cata lan number
of parse trees for each sentence in the following se-
quence.

1 It
1 It
2 It
5

was the number.
was the number of products.
was the number of products of products.

It was the number of products of products
of products.

14 It was the number of products of products

of products of products.

These predict ions cont inue to hold with as many as
nine preposi t ional phrases (4862 parse trees).

4. Table Lookup

We could improve EQSP's pe r fo rmance on PPs if
we could find a more efficient way to compute Cata-
lan numbers than chart parsing, the method currently
employed by EQSP. Let us propose two alternatives:
table lookup and evaluating expression (10) directly.
Both are very efficient over practical ranges of n, say
no more than 20 phrases or so. 8 In bo th cases, the
ambiguity of a sentence in g rammar (5a) can be deter-
mined by counting the number of occurrences of " and
John" and then retrieving the Cata lan of that number.
These approaches bo th take linear t ime (over practical
ranges of n), 9 whereas chart pars ing requires cubic
t ime to parse sentences in these grammars , a signifi-
cant improvement .

So far we have shown how to compute in linear
t ime the number of ambiguous in terpre ta t ions of a
sentence in an " e v e r y way ambiguous" grammar .
However , we are really in teres ted in finding parse
trees, not just the number of ambiguous in te rpre ta-
tions. We could extend the table lookup algorithm to
find trees rather than ambiguity coefficients, by modif-
ying the table to store trees instead of numbers. For
parsing purposes, Cat i can be thought of as a pointer
to the i th entry of the table. So, for a sentence in
g rammar (5a), for example, the machine could count

the number of occurrences of " a n d J o h n " and then
retrieve the table entry for that number.

index trees

0 {[John]}
1 {[John and John]}
2 {[[John and John] and John],

[John and [John and John]]}

The table would be more general if i t did not specify
the lexical i tems at the leaves. Le t us replace the table
above with

index trees

0 {[x]}
1 {Ix x]}
2 {[[x x] x], [x [x x]]}

and assume the machine can bind the x 's to the appro-
priate lexical items.

There is a real p rob lem with this table lookup ma-
chine. The parse t rees may not be exact ly cor rec t
because the power series compu ta t ion assumed that
multiplication was associative, which is an appropr ia te
assumption for comput ing ambiguity, but inappropr ia te
for construct ing trees. For example, we observed that
preposi t ional phrases and conjunct ion are both "eve ry
way amb iguous" g rammars because their ambigui ty
coefficients are Cata lan numbers. However , it is not
the case that they genera te exact ly the same parse
trees.

Nevertheless we present the table lookup pseudo-
parser here because it seems to be a speculative new
approach with considerable promise. It is of ten more
efficient than a real parser, and the trees that it finds
may be just as useful as the cor rec t one for m a n y
practical purposes. For example, many speech recog-
nition projects employ a parser to filter out syntacti-
cally inappropr ia te hypotheses. However , a full parser
is not really necessary for this task; a recognizer such
as this table lookup pseudo-pa r se r may be per fec t ly
adequate for this task. Fur thermore , it is of ten possi-
ble to recover the correct trees f rom the output of the
pseudo-parser . In particular, the difference be tween
preposi t ional phrases and conjunct ion could be ac-
counted for by modifying the in terpreta t ion of the PP
category label, so that the trees would be in terpreted
correct ly even though they are not exactly correct .

8 The table lookup scheme ought to have a way to handle the
theoretical possibility that there are an unlimited number of prepo-
sitional phrases. The table lookup routine will employ a more
traditional parsing algorithm (e.g., Ear ley 's algorithm) when the
number of phrases in the input sentence is not stored in the table.

9 The linear time result depends on the assumption that table
lookup (or closed form computation) can be performed in constant
time. This may be a fair assumption over practical ranges of n, but
it is not true in general•

142 American Journal of Computational Linguistics, Volume 8, Number 3-4, Ju ly-December 1982

Kenneth Church and Ramesh Patil Coping with Syntactic Ambiguity

The table lookup approach works for primitive
grammars. The next two sections show how to de-
compose composi te grammars into series and parallel
combinat ions of primitive grammars.

(12a) G = G 1 . G 2 series
(12b) G = G 1 + G 2 parallel

5. Paral lel Decompos i t ion

Parallel decomposi t ion can be very useful for deal-
ing with lexical ambiguity, as in

(13) ...to total with products near profits...

where " to t a l " can be taken as a noun or as a verb, as
in"

(14a) The accountant brought the daily sales to total
with products near profits organized according
to the new law. noun

(14b) The daily sales were ready for the accountant
to total with products near profits organized
according to the new law. verb

The analysis of these sentences makes use of the
additivity proper ty of linear systems. That is, each
case, (14a) and (14b), is t reated separately, and then
the results are added together. Assuming " to t a l " is a
noun, there are three preposi t ional phrases contr ibut-
ing Cat 3 bracketings, and assuming it is a verb, there
are two preposi t ional phrases for Cat x ambiguities.
Combining the two cases produces Cat 3 + Cat x = 5 +
2 = 7 parses. Adding another preposi t ional phrase
yields Cat 4 + Cat 3 = 14 + 5 = 19 parses. (EQSP
behaved as predicted in both cases.)

This behavior is generalized by the following power
series:

P N
(15) { t o V l ~ (Cat i+l + Cat i) (P N)i

which is the sum of the two cases:

(16a) E Cati(P N) i = P N E Cati+i(P N) i noun
i > 0 i

(16b) to V E Cati(P N) i verb
i

This observat ion can be incorporated into the table
lookup pseudo-parser outlined above. Recall that Cat i
is interpreted as the i th index in a table containing all
b inary trees dominat ing i leaves. Similarly, Cat i +
Cat i+l will be in te rpre ted as an instruct ion to
" a p p e n d " the i th entry and i+1 th entry of the table, t0

(17) (A D D - T R E E S
(C A T - T A B L E i)
(C A T - T A B L E (+ i 1)))

Let us consider a system where syntactic processing
strictly precedes semant ic and pragmat ic processing.
In such a system, how could we incorporate semantic

10 This can be implemented efficiently, given an appropriate
representation of sets of trees.

and pragmatic heuristics once we have already parsed
the input sentence and found that it was the sum of
two Cata lans? The parser can simply subtrac t the
inappropriate interpretat ions. If the oracle says that
" to t a l " is a verb, then (16a) would be subtracted f rom
the combined sum, and if the oracle says that " to t a l "
is a noun, then (16b) would be subtracted.

On the other hand, our analysis is also useful in a
sys tem that inter leaves syntact ic processing with se-
mant ic and pragmat ic processing. Suppose that we
had a semant ic routine that could d isambiguate
" to ta l , " but only at a very high cost in execution time.
We need a way to est imate the usefulness of executing
the semantic routine so that we don ' t spend the time if
it is not likely to pay off. The analysis above provides
a very simple way to est imate the benefi t of disambig-
uating " to ta l . " If it turns out to be a verb, then (16a)
trees have been ruled out, and if it turns out to be a
noun, then (16b) trees have been ruled out. We pref-
er our declarative algebraic approach over procedural
heuristic search strategies (e.g., Kaplan 1972) because
we do not have to specify the order of evaluation. We
can delay the binding of decisions until the most op-
por tune moment .

6. Ser ies D e c o m p o s i t i o n

Suppose we have a non- termina l S that is a series
combinat ion of two other non-terminals , NP and VP.
By inspection, the power series of S i s :

(18) S - - N P . V P

This result is easily verified when there is an unmistak-
able dividing point be tween the subject and the predi-
cate. For example, the verb " i s " separates the PPs in
the subject f rom those in the predicate in (19a), but
not in (19b).

(19a) The number of products over sales of ... is near
the number of sales under ... clearly divided

(19b) Is the number of products over sales of ... near
the number of sales under ...? not clearly divided

In (19a), the total number of parse trees is the product
of the number of ways of parsing the subject t imes the
number of ways of parsing the predicate. Both the
subject and the predicate produce a Cata lan number of
parses, and hence the result is the product of two Ca-
talan numbers , which was verified by EQSP (Martin,
Church, and Patil 1981, p. 53). This result can be
formalized in terms of the power series:

(20) (N X Cat i(P N) i) (i s X Cat j (P N) j)
i j

which is formed by taking the product of the two sub-
cases:

(21a) N X Cati(P N) i subject
i

(21b) is X. Cat j (P N) j predicate
J

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 143

Kenneth Church and Ramesh Patil Coping with Syntactic Ambigu i ty

The power series says that the ambiguity of a par-
ticular sentence is the product of Cat i and Catj, where
i is the number of PPs before " i s" and j is the number
af ter " i s . " This could be incorpora ted in the table
lookup parser as an instruction to "mul t ip ly" the i th
entry in the table by the jth entry. Multiplication is a
cross-product operat ion; L × R generates the set of
binary trees whose left sub-tree 1 is f rom L and whose
right sub-tree r is f rom R,

- - m

(22) L x R = {(l , r) l l E L & r e R }

This is a formal definition. For practical purposes, it
may be more useful for the parser to output the list in
the factored form:

(23) (M U L T I P L Y - T R E E S
(C A T - T A B L E i)
(C A T - T A B L E j))

which is much more concise than a list of trees. It is
possible, for example , that semant ic processing can
take advantage of factoring, capturing a semantic gen-
eralization that holds across all subjects or all predi-
cates. Imagine, for example, that there is a semantic
agreement const ra in t be tween predicates and argu-
ments . For example , subjects and predicates might
have to agree on the feature +human. Suppose that
we were given sentences where this const ra in t was
violated by all ambiguous interpretat ions of the sen-
tence. In this case, it would be more efficient to em-
ploy a feature vector scheme (Doster t and Thompson
1971) which propagates the features in fac tored form.
That is, it computes a feature vector for the union of
all possible subjects, and a vector for the union of all
possible VPs, and then compares (intersects) these
vectors to check if there are any interpretat ions that
mee t the constraint . A sys tem such as this, which
keeps the parses in factored form, is much more effi-
cient than one that multiplies them out. Even if se-
mantics cannot take advantage of the factoring, there
is no harm in keeping the representa t ion in factored
form, because it is s t ra ightforward to expand (23) into
a list of trees (though it may be somewhat slow).

This example is relatively simple because " i s " helps
the parser determine the value of i and j. Now let us
return to example (19b) where " i s" does not separate
the two strings of PPs. Again, we determine the pow-
er series by multiplying the two subcases:

(24) is (N ~ C a t i (P N) i) (E. Cat j (P N) j)
i j

= is N E E. Cat i Cat j (P N) l+J
i j

However , this fo rm is not so useful for parsing
because the parser cannot easily determine i and j, the
number of preposi t ional phrases in the subject and the
number in the predicate. It appears the parser will
have to compute the product of two Catalans for each
way of picking i and j, which is somewhat expensive, it

For tuna te ly , the Cata lan funct ion has some special
propert ies so that it is possible algebraically to remove
the references to i and j. In the next section we show

how this expression can be reformula ted in terms of n,
the total number of PPs.

6.1 Auto-Convolut ion of Catalan Grammars

Some readers may have not iced that express ion
(24) is in convolution form. We will make use of this
in the reformulat ion. Notice that the Cata lan series is
a fixed point under auto-convolution (except for a
shift); that is, multiplying a Cata lan power series (i.e.,
1 + x + 2x 2 + 5x 3 + 14x 4 + ... Cati x i . . .) with itself

produces ano ther po lynomia l with Ca ta lan coeff i -
cients. 12 The multiplication is worked out for the first
few terms.

1 + x + 2x 2 + 5x 3 + 14x 4 + ...
× 1 + x + 2x 2 + 5x 3 + 14x 4 + ...

-t-

1 + x + 2x 2 + 5x 3 + 14x 4 + ...
x + x 2 + 2x 3 -t- 5x 4 -t- ...

2x 2 + 2x 3 + 4x 4 + ...

5x 3 + 5x 4 -I- ...
14x 4 + ...

1 + 2x + 5X 2 + 14X 3 + 42X 4 -t- ...

This proper ty can be summarized as:

(25) ~ C a t i x i y . C a t j x j = E C a t n + 1 x n
i j n

where n equals i+j .

Intuitively, this equat ion says that if we have two
"every way ambiguous" (Cata lan) constructions, and
we combine them in every possible way (convolut ion) ,
the result is an " e v e r y way a m b i g u o u s " (Ca ta lan)
construct ion. With this observa t ion , equat ion (24)
reduces to:

(26) is (N E. Cat i (P N) i) (E Cat j (P N) j)
l j

= is N ~ C a t n + l (P N) n
n

Hence the number of parses in the auxil iary-inverted
case is the Cata lan of one more than in the non-
inverted cases. As predicted, EQSP found the follow-
ing inverted sentences to be more ambiguous than
their non- inver ted counte rpar t s (previously discussed
on page 142) by one Cata lan number.

11 Earley's algorithm and most other context-free parsing
algorithms actually work this way.

12 The proof immediately follows from the z- transform of the
Catalan series (Knuth 1975, p. 388): zB(z) 2 = B(z) - l.

144 American Journal of Computat ional Linguist ics, Volume 8, Number 3-4, Ju ly-December 1982

Kenneth Church and Ramesh Patil Coping with Syntactic Ambiguity

1 Was the number?
2 Was the number of products?
5 Was the number of products of products?

14 Was the number of products of products
of products?

42 Was the number of products of products
of products of products?

1 It was the number.
1 It was the number of products.
2 It was the number of products of products.
5 It was the number of products of products

of products.
14 It was the number of products of products

of products of products.

H o w could this result be incorporated into the table
lookup pseudo-parser? Recall that the pseudo-parser
implements Catalan grammars by returning an index
into the Catalan table. For example, if there were i
PPs, the parser would return: (CAT-TABLE i). We
now extend the indexing scheme so that the parser
implements a series connect ion of two Catalan gram-
mars by returning one higher index than it would for a
simple Catalan grammar. That is, if there were n PPs,
the parser would return (CAT-TABLE (+ n 1)).

Series connect ions of Cata lan g rammars are very
common in every day natural language, as illustrated
by the following two sentences, which have received
considerable a t tent ion in the l i terature because the
parser cannot separate the direct object f rom the pre-
positional complement .

(27a) I saw the man on the hill with a telescope ...
(27b) Put the block in the box on the table in the

kitchen ...

Both examples have a Cata lan number of ambiguities
because the auto-convolut ion of a Catalan series yields
another Cata lan series. 13 This result can improve
parsing per formance because it suggests ways to re-
organize (compile) the grammar so that there will be
fewer references to quanti t ies that are not readily
available. This re-organizat ion will reap benefi ts that
chart parsers (e.g., Ear ley ' s algorithm) do not current-
ly achieve because the re-organizat ion is taking advan-
tage of a number of combinator ic regularities, espe-
cially convolution, that are not easily encoded into a
chart. Section 9 presents an example of the re-
organization.

13 There is a difference between these two sentences because
"put" subcategorizes for two objects unlike "see." Suppose we
analyze "see" as lexically ambiguous between two senses, one that
selects for exactly two objects like "put" and one that selects for
exactly one object as in "I saw it." The first sense contributes the
same number of parses as "put" and the second sense contributes
an additional Catalan factor.

6.2 Chart Parsing

Perhaps it is worthwhile to reformulate chart pars-
ing in our terms in order to show which of the above
results can be cap tured by such an approach and
which cannot. Traditionally, chart parsers maintain a
chart (or matrix) M, whose entries Mij contain the set
of category labels that span f rom posit ion i to posit ion
j in the input sentence. This is accomplished by find-
ing a posit ion k be tween i and j such that there is a
phrase f rom i to k that can combine with ano ther
phrase f rom k to j. An implementa t ion of the inner
loop looks something like:

(28) Mij := { }
loop for k f rom i to j do

Mij := Mij u Mik * Mkj

Essential ly, then, a chart parser is mainta ining tlae
invariant

(29) Mij = ~k Mik ° Mkj

where addition and multiplication of matrix elements is
related to parallel and series combinat ion. Thus chart
parsers are able to process very ambiguous sentences
in polynomial time, as opposed to exponent ia l (or
Catalan) time.

However , the examples above illustrate cases where
chart parsers are not as efficient as they might be. In
part icular, chart parsers implement convolut ion the
" long way ," by picking each possible dividing point k,
and parsing f rom i to k and f rom k to j; they do not
reduce the convolut ion of two Cata lans as we did
above. Similarly, chart parsers do not make use of the
"every way ambiguous" generalization; given a Cata-
lan grammar, chart parsers will eventually enumera te
all possible values of i, j, and k.

7. Comput ing the Power Series Direct ly from the
Grammar

Thus far, most of our derivations have been justi-
fied in terms of successive approximation. It is also
possible to derive some interesting (and well-known)
results directly f rom the g rammar itself. Suppose, for
the sake of discussion, that we choose to analyze ad-
juncts with a right branching grammar, t4 (By conven-
tion, terminal symbols appear in lower case.)

(30) ADJS ~ a d j A D J S I A

First we translate the g rammar into an equat ion in the
usual way. Tha t is, ADJS is modeled as a parallel
combina t ion of two subgrammars , adj ADJS and A.
(A, the empty string, is modeled as 1 because it is the

14 A similar analysis of adjuncts is adopted in Kaplan and
Bresnan 1981. This analysis can also be defended on performance
grounds as an efficiency approximation. (This approximation is in
the spirit of pseudo-attachment (Church 1980).)

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 145

Kenneth Church and Ramesh Patil Coping with Syntactic Ambiguity

identity element under series combination, i.e., multi-
plication.)

(31a) ADJS -~ adj ADJS I A
(31b) ADJS = adj . A D J S + 1

We can simplify (31b) so the right hand side is ex-
pressed in terminal symbols alone, with no references
to non-terminals. This is very useful for processing
because it is much easier for the parser to determine
the presence or absence of terminals than of non-
terminals. That is, it is easier for the parser to deter-
mine, for example, whether a word is an adj, than it is
to decide whether a substring is an ADJS phrase. The
simplification moves all references to ADJS to the left
hand side, by subtracting from both sides,

(31c) A D J S - a d j . A D J S = 1

factoring the left hand side,

(31d) (1 - adj)ADJS = 1

and dividing from both sides,

(31e) ADJS = (1 - a d j) -1

By performing the long division, we observe that (31)
has unit coefficients.

adj adj 2
(31f) . 1 - 1 + - - = 1 + a d j + - -

1 - adj 1 - adj 1 - adj

= 1 + adj + adj 2 + adj3 - - ~ adj n
1 - a d j n

Grammars like ADJS will sometimes be referred to as a
step, by analogy to a unit step function in electrical
engineering.

8. Comput ing the Power Series from the A T N

This section will re-derive the power series for the
unit step grammar directly from the ATN representa-
tion by treating the networks as flow graphs
(Oppenheim 1975). The graph transformations pres-
ented here are directly analogous to the algebraic sim-
plifications employed in the previous section.

First we translate the grammar into an ATN in the
usual way (Woods 1970).

(32) ADJS-* a d jADJS I A

(33)

ADJS:
Cat adj ~_N..~Push ADJ .j...xpop

Jump

This graph can be simplified by performing a compiler
optimization call tail recursion (Church and Kaplan
1981 and references therein). This t ransformation
replaces the final push arc with a jump:

Jump

+ C z t a d j ~ , (~ P o p
(34) ADJS: >

Jump

Tail recursion corresponds directly to the algebraic
operations of moving the ADJS term to the left hand
side, factoring out the ADJS, and dividing from both
sides.

Then we remove the top jump arc by series reduc-
tion. This step corresponds to multiplying by 1 since a
jump arc is the ATN representation for the identi ty
element under series combination.

(35) ADJS:
Cat adj ~ P o p

Jump

The loop can be treated as an infinite series:
(36) 1 + adj + adj 2 + adj 3 + ...

where the zero-th term corresponds to zero iterations
around the loop, the first term corresponds to a single
iteration, the second term to two iterations, and so on.
Recall that (36) is equivalent to:

(37) 1
1 --adj

With this observation, it is possible to open the loop:

(38) ADJS: Q1/(l-adj) ~_~Pop

After one final series reduction, the ATN is equivalent
to expression (31e) above.

(38g) ADJS: Q . 1/(1-adj) e . . ~Pop

Intuitively, an ATN loop (or step grammar) is a divi-
sion operator. We now have composition operators
for parallel composition (addition), series composition
(multiplication), and loops (division).

An ATN loop can be implemented in terms of the
table lookup scheme discussed above. First we refor-
mulate the loop as an infinite sum:

146 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982

Kenneth Church and Ramesh Patil Coping wi th Syntactic Ambiguity

(39) 1 = ~ adji
1--adj i

Then we construct a table so that the i th entry in the
table tells the parser how to parse i occurrences of adj.

9. An Example

Suppose for example that we were given the fol-
lowing grammar:

(40a) S ~ N P V P A D J S
(40b) S --,. V NP (PP) ADJS ADJS
(40c) VP -~ V NP (PP) ADJS
(40d) PP-~ P N P
(40e) NP -~ N I N P P P
(40f) ADJS -~ adj ADJS] A

(In this example we will assume no lexical ambiguity
among N, V, P, and adj.)

By inspection, we notice that NP and PP are Cata-
lan grammars and that ADJS is a Step grammar.

(41a) PP = ~ Ca t i (PN) i
i>0

(41b) NP = N ~ Cati(P N) i
1

(41c) ADJS = ~ adj i
i

With these observations, the parser can process PPs,
NPs, and ADJSs by counting the number of occurrenc-
es of terminal symbols and looking up those numbers
in the appropriate tables. We now substitute (41a-c)
into (40c).

(42) VP = V NP (1 4- PP)ADJS

= V (N .~ Cati(P N) i) (.~ Cati(P N) i) (~ adj i)
l l 1

and simplify the convolution of the two Catalan func-
tions

(43) VP = V (N ~. Cat i+ l (P N) i) (.~ adj i)
1 1

so that the parser can also find VPs by just counting
coccurrences of terminal symbols. Now we simplify
(40a-b) so that S phrases can also be parsed by just
counting occurrences of terminal symbols. First,
translate (40a-b) into the equation:

(44) S = N P V P A D J S + V N P (I + P P) ADJSADJS

and then expand VP using (42)

(45) S = NP (V NP (I + P P) ADJS) ADJS
+ V NP (I + P P) ADJS ADJS

and factor

(46) S = (NP + 1) V N P (I + P P) ADJS 2

That can be simplified considerably because

(47) NP (1 + PP) = N .E Cati(P N) i ~ Cati(P N) i
1 1

--- N .~ Cat i+ l (P N) i
1

and

(48) ADJS 2 = E adj i Y. adj i ___ ~ (i + 1)adj i
i i i

so that

(49) S = (N .~Ca t i (PN) i + 1)
1

V N .~ Cat i+ l (P N) i
1

Y. (i + 1)adj i
i

which has the following ATN realization:

(50)

N " ~ Cati (p N)i V N " ~ Ca t i+ l (p N) i

Jump

" ~ (i + l)adj i

The entire example grammar has now been compiled
into a form that is easier for parsing. This formula
says that sentences are all of the form:

(51) S ~* (N (P N)*) V N (P N)* adj*

which could be recognized by the following finite state
machine:

(52) S: Jump Jump

Jump

~M.J Jump " ~

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 147

Kenneth Church and Ramesh Patil Coping with Syntactic Ambiguity

Fur the rmore , the number of parse trees for a given
input sentence can be found by multiplying three num-
bers: (a) the Catalan of the number of P N's before
the verb, (b) the Catalan of one more than the num-
ber of P N's after the verb, and (c) the ramp of the
number of adj's. For example, the sentence

(53) The man on the hill saw the boy with a tele-
scope yesterday in the morning.

has Cat 1 * Cat 2 * 3 = 6 parses. That is, there is one
way to parse " the man on the hill," two ways to parse
"saw the boy with a te lescope" (" t e l e scope" is either
a complement of " s e e " as in (54a-c) or is a t tached to
" b o y " as in (54d-f)) , and three ways to parse the
adjuncts (they could bo th at tach to the S (54a,d), or
they could bo th a t tach to the VP (54b,e) , or they
could split (54c,f)) .

(54a)

(54b)

(54c)

(54d)

(54e)

(54f)

[The man on the hill [saw the boy with a tele-
scope] [yesterday in the mornmg.]]
The man on the hill [[saw the boy with a tele-
scope] [yesterday in the morning.]]
The man on the hill [[saw the boy with a tele-
scope] yesterday] in the morning.
[The man on the hill saw [the boy with a tele-
scope] [yesterday in the morning.]]
The man on the hill [saw [the boy with a tele-
scope] [yesterday in the morning.]]
The man on the hill [saw [the boy with a tele-
scope] yesterday] in the morning.

All and only these possibilities are permit ted by the
grammar.

10. C o n c l u s i o n

We began our discussion with the observat ion that
certain g rammars are " eve ry way amb iguous" and
suggested that this observat ion could lead to improved
parsing per formance . Ca ta lan g rammars were then
introduced to remedy the situation so that the proc-
essor can delay a t tachment decisions until it discovers
some more useful constraints. Until such time, the
processor can do little more than note that the input
sentence is " e v e r y way ambiguous . " We suggested
that a table lookup scheme might be an effective me-
thod to implement such a processor.

We then introduced rules for combining primitive
grammars, such as Catalan grammars , into composi te
grammars . This linear systems view "bundles up" all
the parse trees into a single concise description capa-
ble of telling us everything we might want to know
about the parses (including how much it might cost to
ask a particular question). This abst ract view of ambi-
guity enables us to ask questions in the most conven-
ient order, and to delay asking until it is clear that the
pay -o f f will exceed the cost. This abs t rac t ion was

very s trongly inf luenced by the not ion of delayed
binding.

We have presented combinat ion rules in three dif-
ferent representa t ion systems: power series, ATNs, and
context - f ree grammars , each of which contr ibuted its
own insights. Power series are convenient for defining
the algebraic operat ions, ATNs are most suited for
discussing implementa t ion issues, and con tex t - f ree
grammars enable the shortest derivations. Perhaps the
fol lowing quota t ion best summar izes our mot iva t ion
for al ternating among these three representa t ion sys-
tems:

A thing or idea seems meaningful only when we have several
different ways to represent it - different perspectives and differ-
ent associations. Then you can turn it around in your mind, so to
speak; however, it seems at the moment you can see it another
way; you never come to a full stop. (Minsky 1981, p. 19)

In each of these representa t ion schemes, we have
in t roduced five primit ive g rammars : Cata lan , Uni t
Step, 1, and 0, and terminals; and four composi t ion
rules: addition, subtract ion, multiplication, and divi-
sion. We have seen that it is of ten possible to employ
these analytic tools in order to re-organize (compile)
the g rammar into a fo rm more suitable for processing
efficiently. We have identif ied cer ta in si tuations
where the ambigui ty is combina tor ic , and have
sketched a few modificat ions to the g rammar that ena-
ble processing to proceed in a more efficient manner .
In particular, we have observed it to be impor tant for
the g rammar to avoid referencing quantit ies that are
not easily determined, such as the dividing point be-
tween a noun phrase and a preposi t ional phrase as in

(55) Put the block in the box on the table in the
kitchen ...

We have seen that the desired re-organiza t ion can be
achieved by taking advantage of the fact that the auto-
convolut ion of a Cata lan series produces another Ca-
talan series. This reduced processing time f rom O(n 3)
to almost linear time. Similar analyses have been dis-
cussed for a number of lexically and structurally ambi-
guous construct ions, culminating with the example in
sect ion 9, where we t r ans fo rmed a g r ammar into a
form that could be parsed by a single lef t - to-r ight pass
over the terminal elements. Current ly, these g rammar
re formula t ions have to be p e r f o r m e d by hand. It
ought to be possible to au tomate this process so that
the reformulat ions could be pe r fo rmed by a g rammar
compiler. We leave this project open for future re-
search.

11. A c k n o w l e d g m e n t s

We would like to thank Jon Allen, Sarah Ferguson,
Lowell Hawkinson, Kris Halvorsen, Bill Long, Mitch
Marcus, Rohi t Parikh, and Peter Szolovits for their
very useful commen t s on earlier drafts. We would

148 American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982

especially like to thank Bill Martin for initiating the
project.

References

Church, K. 1980 On Memory Limitations in Natural Language
Processing. MIT/LCS/TR-245 , and IULC.

Church, K. and Kaplan, R. 1981 Removing Recursion from Natural
Language Processors Based on Phrase-Structure Grammars. Paper
presented at Conference on Modeling Human Parsing Strate-
gies, University of Texas at Austin.

Dostert, B. and Thompson, F. 1971. How Features Resolve Syn-
tactic Ambiguity. In Minker, J. and Rosenfeld, S., eds., Pro-
ceedings of the Symposium on Information Storage and Retrieval.

Earley, J. 1970 An Efficient Context-Free Parsing Algorithm,
CACM 13:2.

Harrison, M. 1978 Introduction to Formal Language Theory. Addi-
son Wesley.

Kaplan, R. 1972 Augmented Transition Networks as Psychological
Models of Sentence Comprehension, Artificial Intelligence,
3:77-100.

Kaplan, R. and Bresnan, J. 1981 Lexical-Functional Grammar: A
Formal System for Grammatical Representation. In Bresnan, J.,
ed., The Mental Representation of Grammatical Relations. MIT
Press.

Knuth, D. 1975 The Art of Computer Programming. Vol. 1: Funda-
mental Algorithms. Addison Wesley.

Liu, C. and Liu, J. 1975 Linear Systems Analysis. McGraw Hill.

Malhotra, A. 1975 Design Criteria for a Knowledge-Based English
Language System for Management: An Experimental Analysis.
MIT/LCS/TR- 146.

Martin, W., Church, K., and Patil, R. 1981 Preliminary Analysis of
a Breadth-First Parsing Algorithm: Theoretical and Experimental
Results. MIT/LCS/TR-261 .

Minsky, M. 1981 Music, Mind, and Meaning. MIT A.I. Memo No.
616.

Oppenheim, A. and Schafer, R. 1975. Digital Signal Processing.
Prentice Hall.

Sager, N. 1973 The String Parser for Scientific Literature. In
Rustin, R., ed., Natural Language Processing. Algorithmic Press.

Salomaa, A. 1973 Formal Languages. Academic Press

Woods, W. 1970 Transition Network Grammars for Natural Lan-
guage Analysis, CACM 13:10.

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 149

