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Sentences  are far more ambiguous than one might have thought. There may be 
hundreds, perhaps thousands, of syntactic parse trees for certain very natural sentences of 
English. This fact has been a major problem confronting natural language processing, 
especially when a large percentage of the syntactic parse trees are enumerated during 
semantic/pragmatic processing. In this paper we propose some methods for dealing with 
syntactic ambiguity in ways that exploit certain regularities among alternative parse trees. 
These regularities will be expressed as linear combinations of ATN networks, and also as 
sums and products of formal power series. We believe that such encoding of ambiguity will 
enhance processing, whether syntactic and semantic constraints are processed separately in 
sequence or interleaved together. 

M o s t  pa r se r s  f ind  the  set  of  p a r s e  t r ees  b y  s t a r t i ng  
wi th  the  e m p t y  set  and  add ing  to  it each  t ime t hey  f ind  
a new poss ib i l i ty .  W e  m a k e  the  o b s e r v a t i o n  tha t  in 
ce r t a in  s i tua t ions  it w o u l d  be  much  m o r e  e f f i c i en t  to  
w o r k  in the  o t h e r  d i r ec t ion ,  s t a r t i ng  f rom the  un ive r sa l  
set  (i .e,  the  set  of  all b i n a r y  t r ees )  a n d  ru l ing  t r ees  ou t  
when  the  p a r s e r  dec ides  t ha t  t h e y  c a n n o t  be  parses .  
R u l i n g - o u t  is eas ie r  when  the  set  of  pa r se  t rees  is c los-  
er to the  un ive r sa l  se t  and  ru l ing- in  is eas ie r  when  the  
set  of  pa r se  t rees  is c loser  to  the  e m p t y  set.  Ru l ing -  
ou t  is p a r t i c u l a r l y  su i t ed  fo r  "'every way ambiguous" 
c o n s t r u c t i o n s  such as p r e p o s i t i o n a l  ph ra se s  tha t  have  

jus t  as m a n y  pa r se  t rees  as t he re  are  b i n a r y  t r ees  ove r  
the  t e rmina l  e l ements .  Since  e v e r y  t ree  is a pa r se ,  the  
p a r s e r  d o e s n ' t  have  to  rule  any  of  t h e m  out .  

In  some  sense ,  this  is a f o r m a l i z a t i o n  o f  an  idea  
tha t  has  b e e n  in the  l i t e r a tu re  fo r  some  t ime.  T h a t  is, 
it  has  b e e n  n o t i c e d  for  a long  t ime tha t  these  sor t s  o f  
v e r y  a m b i g u o u s  c o n s t r u c t i o n s  a re  v e r y  d i f f i cu l t  fo r  
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mos t  pa r s i ng  a lgo r i thms ,  bu t  ( a p p a r e n t l y )  no t  for  p e o -  

ple .  Th is  o b s e r v a t i o n  has  l ed  s o m e  r e s e a r c h e r s  to  
h y p o t h e s i z e  a d d i t i o n a l  p a r s i n g  m e c h a n i s m s ,  such  as 

p s e u d o - a t t a c h m e n t  ( C h u r c h  1980,  pp .  6 5 - 7 1 )  2 a n d  

p e r m a n e n t  p r e d i c t a b l e  a m b i g u i t y  (Sage r  1973) ,  so tha t  

t he  p a r s e r  c o u l d  " a t t a c h  al l  w a y s "  in a s ingle  s tep .  

H o w e v e r ,  these  m e c h a n i s m s  have  a lways  l a c k e d  a p re -  

cise i n t e r p r e t a t i o n ;  we will  p r e s e n t  a much  m o r e  fo r -  

mal  w a y  of  cop ing  wi th  " e v e r y  w a y  a m b i g u o u s "  g r a m -  

m a r s ,  d e f i n e d  in t e r m s  o f  Catalan numbers ( K n u t h  

1975,  pp.  3 8 8 - 3 8 9 ,  5 3 1 - 5 3 3 ) .  

1. Ambiguity is a Practical Problem 

S e n t e n c e s  a re  fa r  m o r e  a m b i g u o u s  t h a n  one  migh t  

have  though t .  O u r  e x p e r i e n c e  wi th  the  EQSP p a r s e r  

(Mar t i n ,  Chu rc h ,  and  Pa t i l  1981)  i nd i ca t e s  tha t  t he re  

m a y  be  h u n d r e d s ,  p e r h a p s  t h o u s a n d s ,  o f  s y n t a c t i c  

pa r se  t rees  for  ce r t a in  ve ry  n a t u r a l  s e n t e n c e s  of  E n g -  
lish. F o r  e x a m p l e ,  c o n s i d e r  the  f o l l o w i n g  s e n t e n c e  

wi th  two  p r e p o s i t i o n a l  ph rases :  

2 The idea of pseudo-attachment was first proposed by Mar- 
cus (private communication), though Marcus does not accept the 
formulation in Church 1980. 
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(1) Put the block in the box on the table. 

which has two interpretat ions:  

(2a) Put the block[in the box on the table] 
(2b) Put [the block in the box] on the table. 

These syntact ic  ambiguit ies grow "combina to r i a l l y "  
with the number  of preposi t ional  phrases. For  exam- 
ple, when a third PP is added to the sentence above,  
there are five interpretat ions:  

(3a) Put the block [[in the box on the table] in the 
kitchen]. 

(3b) Put the block [in the box [on the table in the 
kitchen]]. 

(3c) Put [[the block in the box] on the table] in the 
kitchen. 

(3d) Put [the block [in the box on the table]] in the 
kitchen. 

(3e) Put [the block in the box] [on the table in the 
kitchen]. 

When a fourth PP is added, there are four teen trees, 
and so on. This sort  of combinator ic  ambiguity has 
been  a major  p rob lem confront ing  natural  language 
processing. In this paper  we propose  some methods  
for dealing with syntactic ambiguity in ways that  take 
advantage of regularities among the alternative parse 
trees. 

In part icular ,  we observe  that  enumera t ing  the 
parse trees as above  fails to capture  the impor tan t  
genera l iza t ion that  preposi t ional  phrases  are " e v e r y  
way ambiguous ,"  or more  precisely, the set of parse 
trees over  i PPs is the same as the set of binary trees 
that  can be constructed over  i terminal elements.  No-  
tice, for example,  that  there are two possible binary 
trees over  three elements,  

(4a) [ ... b lock ... [ ... box ... table ... ]] 
(4b) [[ ... block ... box ...] ... table ... ] 

corresponding to (2a) and (2b),  respectively,  and that  
there are five binary trees over  four e lements  corre-  
sponding to (3a ) - (3c ) ,  respectively. 

PPs, adjuncts,  conjuncts ,  noun-noun  modif icat ion,  
s tack relative clauses, and o ther  " eve ry  way 
ambiguous"  construct ions will be t reated as primitive 
objects.  They can be combined in various ways to 
produce composi te  constructions,  such as lexical ambi-  
guity, which may also be very ambiguous but not nec- 
essarily " eve ry  way ambiguous . "  Lexical  ambigui ty ,  
for example,  will be analyzed as the sum of its senses, 
or in flow graph terminology (Oppenhe im and Schafer 
1975) as a parallel connect ion of its senses. Structural 
ambiguity,  on the other  hand, will be analyzed as the 
product  of its components ,  or in flow graph terminolo-  
gy as a series connection.  

2. Formal P o w e r  Ser ie s  

This section will make the linear systems analogy 
more  precise by  relat ing con tex t - f r ee  g rammars  to 
formal  power  series (polynominals) .  Formal  power  
series are a wel l -known device in the formal  language 
li terature (e.g., Salomaa 1973) for  developing the alge- 
braic propert ies  of  context - f ree  grammars .  We intro- 
duce them here to establ ish a fo rmal  basis for  our 
upcoming discussion of processing issues. 

The power  series for  g rammar  (5a) is (5b).  

(5a) NP - , .John I N P a n d N P  
(5b) NP -- John + John and John 

+ 2John and John and John  
+ 5John and John  and John and John 
+ 14John and John and John and John 

and John  + ... 

Each  te rm consists  of a sentence genera ted  by  the 
g r ammar  and an ambigui ty  coef f ic ient  3 which counts  
how many  ways the sentence can be generated.  For  
example,  the sentence " J o h n "  has one parse tree 

(6a) [John] 1 tree 

because the zero- th  coeff icient  of the power  series is 
one. Similarly, the sentence " J o h n  and John"  also has 
one tree because its coefficient  is one, 

(6b) [John and John] 1 tree 

and " John  and John and John"  has two because its 
coefficient  is two, 

(6c) [[John and John] and John],  2 trees 

[John and [John and John]] 

and " J o h n  and John and John and John"  has five, 

(6d) [John and [[John and John] and John]],  5 trees 
[John and [John and [John and John]]] ,  
[[[John and John],  and John] and John],  
[[John and [John and John]] and John],  
[[John and John] and [John and John]] 

and so on. The  reader  can ver i fy  for  himself  that  
" J o h n  and John  and John  and John  and J o h n "  has 
four teen trees. 

Note  that  the power  series encapsulates  the ambi-  
guity response of the system (grammar)  to all possible 
input sentences.  In this way, the power  series is ana-  
logous to the impulse response in electrical engineer-  
ing, which encapsula tes  the response  of the sys tem 
(circuit) to all possible input frequencies.  (Ambigui ty  
coeff ic ients  bear  a s t rong resemblance  to f requency  
coefficients in Fourier  analysis.) All of these trans-  
fo rmed  represen ta t ion  sys tems (e.g., power  series, 
impulse response,  and Fourier  series) provide a com- 
plete descr ipt ion of  the sys tem with no loss of  
in format ion  4 (and no heurist ic approximat ions ,  for  
example ,  search s trategies  (Kaplan  1972)) .  Trans-  

3 The formal language literature (Harrison 1978, Salomaa 
1973) uses the term support instead of ambiguity coefficient. 

140 Amer ican  Journal  of  Compu ta t i ona l  Linguist ics,  Vo lume 8, Number  3-4, Ju ly -December  1982 



Kenneth Church and Ramesh Patil Coping wi th  Syntactic Ambiguity 

forms are of ten  very useful because  they provide  a 
different point of view. Certain observat ions  are more 
easily seen in the t ransform space than in the original 
space, and vice versa. 

This paper  will discuss several ways to generate  the 
power  series. Initially let us consider successive ap- 
proximation.  Of  all the techniques to be presented 
here, successive approximat ions  most  closely resembles 
the approach taken by most  current  chart  parsers in- 
cluding EQSP (Martin,  Church,  and Patil 1981). The 
alternative approaches  take advantage of certain regu- 
larities in the power  series in order  to produce  the 
same results more efficiently. 

Successive approximat ion works as follows. First 
we translate g rammar  (5a) into the equation: 

(7) NP = John + N P .  and .  NP 

where " + "  connects  two ways of generat ing an NP 
and " . "  concatenates  two parts of an NP. In some 
sense, we want  to " so lve"  this equat ion for  NP. This 
can be accomplished by refining successive approxima-  
tions. An initial approximat ion NP 0 is formed by tak-  
ing NP to be the empty  language, 

(8a) NP 0 = 0 

Then we form the next approximat ion by substituting 
the previous approx imat ion  into equat ion (7),  and 
simplifying according to the usual rules of  a lgebra 
(e.g., assuming distributivity,  associativity,  5 ident i ty 
element,  and zero element).  

(8b) NP 1 = John -t- NP 0- and .  NP 0 
= John + 0 .  and .  0 = John 

We continue refining the approximat ion in this way. 

(8c) NP 2 = John + NP 1 • and .  NP 1 
= John + John and John 

(8d) NP 3 = John + NP 2 and NP 2 
= John + (John + John and J ohn ) .  and .  

(John + John and John)  
= John + John and John 

+ John and John and John 
+ John and John and John 
+ John and John and John and John 

4 This needs a qualification. It is true that the power series 
provides a complete description of the ambiguity response to any 
input sentence. However, the power series representation may be 
losing some information that would be useful for parsing. In partic- 
ular, there might be some cases where it is impossible to recover the 
parse trees exactly, as we will see, though this may not be too 
serious a problem for many practical applications. That is, it is 
often possible to recover most (if not all) of the structure, which 
may be adequate for many applications. 

5 The careful reader may correctly object to this assumption. 
We include it here for expository convenience, as it greatly simpli- 
fies the derivations though it should be noted that many of the 
results could be derived without the assumption. Furthermore,  this 
assumption is valid for counting ambiguity. That is, I A " B I * 
I C I  = I A I  * IB " C I ,  where A , B ,  and C are sets of trees and 
I A I denotes the number of members of A, and * is integer multi- 

plication. 

= John + John and John 
+ 2 John and John and John  
+ John and John and John and John 

Eventually,  we have NP expressed as an infinitely long 
polynominal  (5b) above.  This expression can be sim- 
plified by  introducing a nota t ion  for  exponent ia t ion .  
Let  x i be an abbrevia t ion for multiplying x • x • ... • x, 
i times. 

(9) NP = John + John and John 
+ 2 John (and John)  2 
+ 5 John (and John)  3 
+ 14 John (and John)  4 
-1 -  , . .  

Note  that  paren theses  are in te rpre ted  dif ferent ly  in 
algebraic  equat ions  than  in con tex t - f ree  rules. In 
con tex t - f ree  rules, paren theses  denote  opt ional i ty ,  
where in equations they denote  precedence relations 
among algebraic operat ions.  

3. Catalan Numbers  

Ambigui ty  coefficients take on an important  practi-  
cal significance when  we can model  them directly 
wi thout  resor t ing to successive approx imat ion  as 
above.  This can result in substantial  t ime and space 
savings in certain special cases where there are much 
more  efficient ways to compute  the coefficients than 
successive approx imat ion  (char t  parsing) .  Equat ion  
(9) is such a special case; the coeff icients  follow a 
wel l -known combina tor ic  series called the Catalan 
Numbers (Knuth 1975, pp. 388-389,  531-533) .  6 This 
section will describe Cata lan  numbers  and their rela- 
tion to parsing. 

The first few Cata lan  numbers  are 1, 1, 2, 5, 14, 
42, 132, 469, 1430, 4862. They are generated by the 
closed form expression: 7 

(10) C a t n =  ( 2 n )  - (  2n 
n - l )  

This formula  can be explained in terms of parenthes-  
ized expressions,  which are equivalent to trees. Cat  n 
is the number  of ways to parenthesize  a formula of 
length n. There  are two conditions on parenthesiza-  
tion: (a) there must  be the same number  of open and 
close parentheses,  and (b) they must be properly nest-  
ed so that  an open parenthesis  precedes  its matching 
close parenthesis.  The first term counts  the number  of 

6 This fact was first pointed out to us by V. Pratt. We sus- 
pect that it is a generally well-known result in the formal language 
community, though its origin is unclear. 

7 (~) is known as a binominal coefficient. It is equivalent to 
{a!/[b!(a-b)!]},  

where a! is equal to the product of all integers between 1 and a. 
Binomial coefficients are very common in eombinatories where they 
are interpreted as the number  of ways to pick b objects out of a set 
of a objects. 
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sequences of 2n parentheses,  such that  there are the 
same number  of opens and closes. The second term 
subtracts  cases violating condit ion (b). This explana-  
tion is e laborated in Knuth  1975, p. 531. 

It  is very useful to know that  the ambiguity coeffi-  
cients are Cata lan  numbers  because  this observa t ion  
enables us to replace equat ion (9) with (11), where 
Cat  i denotes  the i th Cata lan  number.  (All summations  
range f rom 0 to oo unless noted otherwise.)  

(11) NP = E Cat  i John (and John)  t 
i 

The i th Catalan number  is the number  of binary trees 
that  can be constructed over  i phrases.  This theoret i -  
cal model  correct ly  predicts  our pract ical  exper ience  
with EQSP. EQSP found exactly the Cata lan  number  
of parse trees for each sentence in the following se- 
quence. 

1 It  
1 It  
2 It  
5 

was the number.  
was the number  of products.  
was the number  of products  of products.  

It was the number  of products  of products  
of products.  

14 It  was the number  of products  of products  

of products  of products.  

These  predict ions cont inue to hold with as many  as 
nine preposi t ional  phrases (4862 parse trees). 

4. Table Lookup 

We could improve  EQSP's pe r fo rmance  on PPs if 
we could find a more  efficient way to compute  Cata-  
lan numbers  than chart  parsing, the method currently 
employed by EQSP. Let  us propose  two alternatives: 
table lookup and evaluating expression (10) directly. 
Both are very efficient over  practical ranges of n, say 
no more than 20 phrases or so. 8 In bo th  cases, the 
ambiguity of a sentence in g rammar  (5a) can be deter-  
mined by counting the number  of occurrences  of  " and  
John"  and then retrieving the Cata lan  of that  number.  
These approaches  bo th  take linear t ime (over  practical  
ranges  of n),  9 whereas  chart  pars ing requires cubic 
t ime to parse sentences in these grammars ,  a signifi- 
cant improvement .  

So far we have shown how to compute  in linear 
t ime the number  of ambiguous  in terpre ta t ions  of  a 
sentence  in an " e v e r y  way ambiguous"  grammar .  
However ,  we are really in teres ted  in finding parse 
trees,  not  just the number  of ambiguous  in te rpre ta-  
tions. We could extend the table lookup algorithm to 
find trees rather  than ambiguity coefficients,  by modif-  
ying the table to store trees instead of numbers.  For  
parsing purposes,  Cat  i can be thought  of as a pointer  
to the i th entry of the table. So, for a sentence in 
g rammar  (5a),  for example,  the machine could count 

the number  of  occurrences  of  " a n d  J o h n "  and then 
retrieve the table entry for that  number.  

index trees 

0 {[John]} 
1 {[John and John]} 
2 {[[John and John] and John],  

[John and [John and John]]} 

The table would be more general  if i t  did not specify 
the lexical i tems at the leaves. Le t  us replace the table 
above with 

index trees 

0 {[x]} 
1 {Ix x]} 
2 {[[x x] x], [x [x x]]} 

and assume the machine can bind the x 's  to the appro-  
priate lexical items. 

There  is a real p rob lem with this table lookup ma-  
chine. The  parse t rees  may  not  be  exact ly  cor rec t  
because  the power  series compu ta t ion  assumed that  
multiplication was associative, which is an appropr ia te  
assumption for  comput ing ambiguity,  but  inappropr ia te  
for construct ing trees. For  example,  we observed that  
preposi t ional  phrases and conjunct ion are both  "eve ry  
way amb iguous"  g rammars  because  their  ambigui ty  
coefficients are Cata lan  numbers.  However ,  it is not 
the case that  they genera te  exact ly  the same parse  
trees. 

Nevertheless  we present  the table lookup pseudo-  
parser  here because it seems to be a speculative new 
approach with considerable promise.  It  is of ten  more  
efficient than a real parser,  and the trees that  it finds 
may  be just as useful  as the cor rec t  one for  m a n y  
practical  purposes.  For  example,  many  speech recog-  
nition projects  employ a parser  to filter out syntacti-  
cally inappropr ia te  hypotheses.  However ,  a full parser  
is not  really necessary for this task; a recognizer  such 
as this table  lookup pseudo-pa r se r  may  be per fec t ly  
adequate  for this task. Fur thermore ,  it is of ten possi- 
ble to recover  the correct  trees f rom the output  of the 
pseudo-parser .  In particular,  the difference be tween  
preposi t ional  phrases  and conjunct ion  could be  ac- 
counted for by modifying the in terpreta t ion of the PP 
category label, so that  the trees would be in terpreted 
correct ly even though they are not exactly correct .  

8 The table lookup scheme ought to have a way to handle the 
theoretical possibility that there are an unlimited number  of prepo- 
sitional phrases.  The table lookup routine will employ a more 
traditional parsing algorithm (e.g., Ear ley 's  algorithm) when the 
number  of phrases in the input sentence is not stored in the table. 

9 The linear time result depends on the assumption that table 
lookup (or closed form computation) can be performed in constant  
time. This may be a fair assumption over practical ranges of n, but 
it is not true in general• 
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The table lookup approach  works for  primitive 
grammars.  The next  two sections show how to de- 
compose  composi te  grammars  into series and parallel 
combinat ions of primitive grammars.  

(12a) G = G 1 . G  2 series 
(12b) G = G 1 + G 2 parallel 

5. Paral lel  Decompos i t ion  

Parallel decomposi t ion can be very useful for deal- 
ing with lexical ambiguity,  as in 

(13) ...to total  with products  near  profits...  

where " to t a l "  can be taken as a noun or as a verb,  as 
in" 

(14a) The accountant  brought  the daily sales to total  
with products near  profits organized according 
to the new law. noun 

(14b) The daily sales were ready for the accountant  
to total with products  near  profits organized 
according to the new law. verb 

The analysis of these sentences makes  use of  the 
additivity proper ty  of linear systems. That  is, each 
case, (14a) and (14b),  is t reated separately,  and then 
the results are added together.  Assuming " to t a l "  is a 
noun, there are three preposi t ional  phrases contr ibut-  
ing Cat  3 bracketings,  and assuming it is a verb,  there 
are two preposi t ional  phrases  for  Cat  x ambiguities.  
Combining the two cases produces Cat  3 + Cat  x = 5 + 
2 = 7 parses. Adding another  preposi t ional  phrase 
yields Cat  4 + Cat  3 = 14 + 5 = 19 parses. (EQSP 
behaved as predicted in both  cases.) 

This behavior  is generalized by the following power  
series: 

P N  
(15) { t o V l ~  (Cat i+l  + Cat i ) (P  N)i 

which is the sum of the two cases: 

(16a) E Cati(P N) i = P N E Cati+i(P N) i noun 
i > 0  i 

(16b) to V E Cati(P N) i verb 
i 

This observat ion can be incorporated into the table 
lookup pseudo-parser  outlined above.  Recall that  Cat  i 
is interpreted as the i th index in a table containing all 
b inary  trees dominat ing i leaves. Similarly, Cat  i + 
Cat i+l  will be in te rpre ted  as an instruct ion to 
" a p p e n d "  the i th entry and i+1 th entry of the table, t0 

(17) ( A D D - T R E E S  
( C A T - T A B L E  i) 
( C A T - T A B L E ( +  i 1))) 

Let  us consider a system where syntactic processing 
strictly precedes  semant ic  and pragmat ic  processing.  
In such a system, how could we incorporate  semantic  

10 This can be implemented efficiently, given an appropriate 
representation of sets of trees. 

and pragmatic  heuristics once we have already parsed 
the input sentence and found that  it was the sum of 
two Cata lans?  The  parser  can simply subtrac t  the 
inappropriate  interpretat ions.  If  the oracle says that  
" to t a l "  is a verb,  then (16a) would be subtracted f rom 
the combined sum, and if the oracle says that  " to t a l "  
is a noun, then (16b) would be subtracted.  

On the other  hand, our analysis is also useful in a 
sys tem that  inter leaves syntact ic  processing with se- 
mant ic  and pragmat ic  processing.  Suppose that  we 
had a semant ic  routine that  could d isambiguate  
" to ta l , "  but only at a very high cost in execution time. 
We need a way to est imate the usefulness of executing 
the semantic  routine so that  we don ' t  spend the time if 
it is not likely to pay off. The analysis above provides 
a very simple way to est imate the benefi t  of disambig- 
uating " to ta l . "  If it turns out to be a verb,  then (16a) 
trees have been ruled out, and if it turns out to be a 
noun, then (16b) trees have been ruled out. We pref-  
er our declarative algebraic approach over  procedural  
heuristic search strategies (e.g., Kaplan 1972) because 
we do not have to specify the order  of evaluation. We 
can delay the binding of decisions until the most  op- 
por tune moment .  

6. Ser ies D e c o m p o s i t i o n  

Suppose we have a non- termina l  S that is a series 
combinat ion of two other  non-terminals ,  NP and VP. 
By inspection, the power  series of S i s :  

(18) S - -  N P . V P  

This result is easily verified when there is an unmistak-  
able dividing point be tween  the subject and the predi- 
cate. For  example,  the verb " i s "  separates  the PPs in 
the subject f rom those in the predicate in (19a),  but 
not in (19b).  

(19a) The number  of products  over  sales of ... is near  
the number  of sales under  ... clearly divided 

(19b) Is the number  of products  over  sales of ... near  
the number  of sales under  ...? not clearly divided 

In (19a),  the total  number  of parse trees is the product  
of the number  of ways of parsing the subject t imes the 
number  of ways of parsing the predicate.  Both the 
subject  and the predicate produce a Cata lan  number  of 
parses,  and hence the result is the product  of two Ca-  
talan numbers ,  which was verified by EQSP (Martin,  
Church,  and Patil 1981, p. 53). This result can be 
formalized in terms of the power  series: 

(20) ( N  X Cat i(P N) i) ( i s  X Cat j (P  N) j )  
i j 

which is formed by taking the product  of the two sub- 
cases: 

(21a) N X Cati(P N) i subject 
i 

(21b) is X. Cat j (P N) j predicate 
J 
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The power  series says that the ambiguity of a par-  
ticular sentence is the product  of Cat  i and Catj, where 
i is the number  of PPs before  " i s"  and j is the number  
af ter  " i s . "  This could be incorpora ted  in the table 
lookup parser  as an instruction to "mul t ip ly"  the i th 
entry in the table by the jth entry. Multiplication is a 
cross-product  operat ion;  L × R generates  the set of 
binary trees whose left sub-tree 1 is f rom L and whose 
right sub-tree r is f rom R, 

- -  m 

(22) L x R  = {( l , r )  l l  E L & r e R }  

This is a formal  definition. For  practical purposes,  it 
may be more useful for the parser  to output  the list in 
the factored form: 

(23) ( M U L T I P L Y - T R E E S  
( C A T - T A B L E  i) 
( C A T - T A B L E  j)) 

which is much more concise than a list of trees. It  is 
possible,  for  example ,  that  semant ic  processing can 
take advantage of factoring, capturing a semantic  gen- 
eralization that  holds across all subjects or all predi-  
cates. Imagine,  for example,  that  there is a semantic  
agreement  const ra in t  be tween  predicates  and argu- 
ments .  For  example ,  subjects  and predicates  might 
have to agree on the feature  +human.  Suppose that  
we were given sentences  where this const ra in t  was 
violated by all ambiguous interpretat ions of the sen- 
tence. In this case, it would be more efficient to em- 
ploy a feature vector  scheme (Doster t  and Thompson  
1971) which propagates  the features in fac tored form. 
That  is, it computes  a feature  vector  for the union of 
all possible subjects,  and a vector  for the union of all 
possible VPs, and then compares  ( intersects)  these 
vectors to check if there are any interpretat ions that  
mee t  the constraint .  A sys tem such as this, which 
keeps the parses in factored form, is much more effi- 
cient than one that  multiplies them out. Even if se- 
mantics cannot  take advantage of the factoring, there 
is no harm in keeping the representa t ion in factored 
form, because it is s t ra ightforward to expand (23) into 
a list of trees ( though it may be somewhat  slow). 

This example is relatively simple because " i s "  helps 
the parser  determine the value of i and j. Now let us 
return to example (19b) where " i s"  does not separate  
the two strings of PPs. Again, we determine the pow-  
er series by multiplying the two subcases: 

(24) is ( N  ~ C a t i ( P N )  i) (E. Cat j (P N) j )  
i j 

= is N E E. Cat  i Cat j (P N )  l+J 
i j 

However ,  this fo rm is not so useful for  parsing 
because the parser  cannot  easily determine i and j, the 
number  of preposi t ional  phrases in the subject  and the 
number  in the predicate.  It appears  the parser  will 
have to compute  the product  of two Catalans for each 
way of picking i and j, which is somewhat  expensive, it 

For tuna te ly ,  the Cata lan  funct ion has some special 
propert ies  so that  it is possible algebraically to remove  
the references  to i and j. In the next  section we show 

how this expression can be reformula ted  in terms of n, 
the total  number  of PPs. 

6.1 Auto-Convolut ion  of Catalan Grammars 

Some readers  may  have  not iced that  express ion 
(24) is in convolution form. We will make  use of this 
in the reformulat ion.  Notice that  the Cata lan  series is 
a fixed point  under  auto-convolution (except  for  a 
shift); that  is, multiplying a Cata lan  power  series (i.e., 
1 + x + 2x 2 + 5x 3 + 14x 4 + ... Cati x i . . . )  with itself 

produces  ano ther  po lynomia l  with Ca ta lan  coeff i -  
cients. 12 The multiplication is worked out for the first 
few terms. 

1 + x + 2x 2 + 5x 3 + 14x 4 + ... 
× 1 + x + 2x 2 + 5x 3 + 14x 4 + ... 

-t- 

1 + x + 2x 2 + 5x 3 + 14x 4 + ... 
x + x 2 + 2x 3 -t- 5x 4 -t- ... 

2x 2 + 2x 3 + 4x 4 + ... 

5x 3 + 5x 4 -I- ... 
14x 4 + ... 

1 + 2x + 5X 2 + 14X 3 + 42X 4 -t- ... 

This proper ty  can be summarized  as: 

(25) ~ C a t  i x  i y . C a t j  x j = E C a t n +  1 x n 
i j n 

where n equals i+j .  

Intuitively, this equat ion says that  if we have two 
"every  way ambiguous"  (Cata lan)  constructions,  and 
we combine them in every possible way (convolut ion) ,  
the result  is an " e v e r y  way a m b i g u o u s "  (Ca ta lan)  
construct ion.  With this observa t ion ,  equat ion  (24) 
reduces to: 

(26) is ( N  E. Cat i (P N ) i ) ( E  Cat j (P  N) j )  
l j 

= is N ~ C a t n + l ( P  N) n 
n 

Hence  the number  of parses in the auxil iary-inverted 
case is the Cata lan  of one more  than  in the non-  
inverted cases. As predicted,  EQSP found the follow- 
ing inverted sentences  to be more  ambiguous  than  
their non- inver ted  counte rpar t s  (previously  discussed 
on page 142) by one Cata lan  number.  

11 Earley's  algorithm and most  other  context-free parsing 
algorithms actually work this way. 

12 The proof immediately follows from the z- transform of the 
Catalan series (Knuth 1975, p. 388): zB(z) 2 = B(z) - l. 
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1 Was the number?  
2 Was the number  of products?  
5 Was the number  of products  of products?  

14 Was the number  of products  of products  
of products? 

42 Was the number  of products  of products  
of products  of products? 

1 It was the number.  
1 It was the number  of products.  
2 It  was the number  of products  of products.  
5 It was the number  of products  of products  

of products.  
14 It was the number  of products  of products  

of products  of products.  

H o w  could this result be incorporated into the table 
lookup pseudo-parser?  Recall that  the pseudo-parser  
implements Catalan grammars  by returning an index 
into the Catalan table. For  example,  if there were i 
PPs, the parser  would return:  (CAT-TABLE i). We 
now extend the indexing scheme so that  the parser  
implements  a series connect ion of two Catalan gram- 
mars by returning one higher index than it would for  a 
simple Catalan grammar.  That  is, if there were n PPs, 
the parser  would return (CAT-TABLE (+ n 1)). 

Series connect ions  of Cata lan  g rammars  are very 
common in every day natural  language, as illustrated 
by the following two sentences,  which have received 
considerable  a t tent ion in the l i terature because  the 
parser  cannot  separate  the direct object  f rom the pre- 
positional complement .  

(27a) I saw the man on the hill with a telescope ... 
(27b)  Put the block in the box on the table in the 

kitchen ... 

Both examples have a Cata lan  number  of ambiguities 
because the auto-convolut ion of a Catalan series yields 
another  Cata lan  series. 13 This result  can improve  
parsing per formance  because it suggests ways to re- 
organize (compile) the grammar  so that there will be 
fewer  references  to quanti t ies that  are not readily 
available. This re-organizat ion will reap benefi ts  that  
chart  parsers (e.g., Ear ley ' s  algorithm) do not current-  
ly achieve because the re-organizat ion is taking advan-  
tage of a number  of combinator ic  regularities, espe- 
cially convolution, that  are not easily encoded into a 
chart.  Section 9 presents  an example  of  the re- 
organization. 

13 There is a difference between these two sentences because 
"put" subcategorizes for two objects unlike "see." Suppose we 
analyze "see" as lexically ambiguous between two senses, one that 
selects for exactly two objects like "put" and one that selects for 
exactly one object as in "I saw it." The first sense contributes the 
same number of parses as "put" and the second sense contributes 
an additional Catalan factor. 

6.2 Chart  Parsing 

Perhaps it is worthwhile to reformulate  chart  pars-  
ing in our terms in order to show which of the above 
results can be cap tured  by such an approach  and 
which cannot.  Traditionally,  chart  parsers maintain a 
chart  (or matrix) M, whose entries Mij contain the set 
of category labels that  span f rom posit ion i to posit ion 
j in the input sentence.  This is accomplished by find- 
ing a posit ion k be tween i and j such that  there is a 
phrase  f rom i to k that  can combine  with ano ther  
phrase f rom k to j. An implementa t ion  of the inner 
loop looks something like: 

(28) Mij := { } 
loop for k f rom i to j do 

Mij := Mij u Mik * Mkj 

Essential ly,  then, a chart  parser  is mainta ining tlae 
invariant  

(29) Mij = ~k Mik ° Mkj 

where addition and multiplication of matrix elements  is 
related to parallel and series combinat ion.  Thus chart  
parsers are able to process very ambiguous sentences 
in polynomial  time, as opposed  to exponent ia l  (or  
Catalan)  time. 

However ,  the examples above illustrate cases where 
chart  parsers are not as efficient as they might be. In 
part icular,  chart  parsers  implement  convolut ion  the 
" long way ,"  by picking each possible dividing point  k, 
and parsing f rom i to k and f rom k to j; they do not 
reduce the convolut ion  of two Cata lans  as we did 
above.  Similarly, chart  parsers do not make use of the 
"every  way ambiguous"  generalization; given a Cata-  
lan grammar,  chart  parsers will eventually enumera te  
all possible values of i, j, and k. 

7. Comput ing the Power  Series Direct ly from the 
Grammar 

Thus far, most  of  our derivations have been justi- 
fied in terms of successive approximation.  It  is also 
possible to derive some interesting (and well-known) 
results directly f rom the g rammar  itself. Suppose,  for 
the sake of discussion, that  we choose to analyze ad- 
juncts with a right branching grammar,  t4 (By conven-  
tion, terminal symbols appear  in lower case.) 

(30) ADJS ~ a d j A D J S  I A 

First we translate the g rammar  into an equat ion in the 
usual way. Tha t  is, ADJS is modeled  as a parallel  
combina t ion  of two subgrammars ,  adj ADJS and A. 
(A, the empty  string, is modeled as 1 because it is the 

14 A similar analysis of adjuncts is adopted in Kaplan and 
Bresnan 1981. This analysis can also be defended on performance 
grounds as an efficiency approximation. (This approximation is in 
the spirit of pseudo-attachment (Church 1980).) 

American Journal of Computational Linguistics, Volume 8, Number 3-4, July-December 1982 145 



Kenneth Church and Ramesh Patil Coping with Syntactic Ambiguity 

identity element under series combination, i.e., multi- 
plication.) 

(31a) ADJS -~ adj ADJS I A 
(31b) ADJS = adj . A D J S  + 1 

We can simplify (31b) so the right hand side is ex- 
pressed in terminal symbols alone, with no references 
to non-terminals. This is very useful for processing 
because it is much easier for the parser to determine 
the presence or absence of terminals than of non- 
terminals. That is, it is easier for the parser to deter- 
mine, for example, whether a word is an adj, than it is 
to decide whether a substring is an ADJS phrase. The 
simplification moves all references to ADJS to the left 
hand side, by subtracting from both sides, 

(31c) A D J S - a d j  . A D J S  = 1 

factoring the left hand side, 

(31d) (1 - adj)ADJS = 1 

and dividing from both sides, 

(31e) ADJS = (1 - a d j )  -1 

By performing the long division, we observe that (31) 
has unit coefficients. 

adj adj 2 
(31f) . 1 - 1 + - -  = 1 + a d j  + - -  

1 - adj 1 - adj 1 - adj 

= 1 + adj + adj 2 + adj3 - - ~ adj n 
1 - a d j  n 

Grammars like ADJS will sometimes be referred to as a 
step, by analogy to a unit step function in electrical 
engineering. 

8. Comput ing  the Power  Series from the A T N  

This section will re-derive the power series for the 
unit step grammar directly from the ATN representa- 
tion by treating the networks as flow graphs 
(Oppenheim 1975). The graph transformations pres- 
ented here are directly analogous to the algebraic sim- 
plifications employed in the previous section. 

First we translate the grammar into an ATN in the 
usual way (Woods 1970). 

(32) ADJS-*  a d jADJS  I A 

(33) 

ADJS: 
Cat adj ~_N..~Push ADJ .j...xpop 

Jump 

This graph can be simplified by performing a compiler 
optimization call tail recursion (Church and Kaplan 
1981 and references therein). This t ransformation 
replaces the final push arc with a jump: 

Jump 

+ C z t a d j  ~ , ( ~ P o p  
(34) ADJS: > 

Jump 

Tail recursion corresponds directly to the algebraic 
operations of moving the ADJS term to the left hand 
side, factoring out the ADJS, and dividing from both 
sides. 

Then we remove the top jump arc by series reduc- 
tion. This step corresponds to multiplying by 1 since a 
jump arc is the ATN representation for the identi ty 
element under series combination. 

(35) ADJS: 
Cat adj ~ P o p  

Jump 

The loop can be treated as an infinite series: 
(36) 1 + adj + adj 2 + adj 3 + ... 

where the zero-th term corresponds to zero iterations 
around the loop, the first term corresponds to a single 
iteration, the second term to two iterations, and so on. 
Recall that (36) is equivalent to: 

(37) 1 
1 --adj 

With this observation, it is possible to open the loop: 

(38) ADJS: Q1/(l-adj) ~_~Pop 

After one final series reduction, the ATN is equivalent 
to expression (31e) above. 

(38g) ADJS: Q .  1/(1-adj) e . . ~Pop  

Intuitively, an ATN loop (or step grammar) is a divi- 
sion operator. We now have composition operators 
for parallel composition (addition), series composition 
(multiplication), and loops (division). 

An ATN loop can be implemented in terms of the 
table lookup scheme discussed above. First we refor- 
mulate the loop as an infinite sum: 
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(39) 1 = ~ adji 
1--adj i 

Then we construct a table so that the i th entry in the 
table tells the parser how to parse i occurrences of adj. 

9. An Example 

Suppose for example that we were given the fol- 
lowing grammar: 

(40a) S ~ N P V P A D J S  
(40b) S --,. V NP (PP) ADJS ADJS 
(40c) VP -~ V NP (PP) ADJS 
(40d) PP-~  P N P  
(40e) NP -~ N I N P P P  
(40f) ADJS -~ adj ADJS ] A 

(In this example we will assume no lexical ambiguity 
among N, V, P, and adj.) 

By inspection, we notice that NP and PP are Cata- 
lan grammars and that ADJS is a Step grammar. 

(41a) PP = ~ Ca t i (PN)  i 
i>0 

(41b) NP = N ~ Cati(P N) i 
1 

(41c) ADJS = ~ adj i 
i 

With these observations, the parser can process PPs, 
NPs, and ADJSs by counting the number of occurrenc- 
es of terminal symbols and looking up those numbers 
in the appropriate tables. We now substitute (41a-c) 
into (40c). 

(42) VP = V NP (1 4- PP)ADJS 

= V (N  .~ Cati(P N) i ) ( .~  Cati(P N ) i ) ( ~  adj i) 
l l 1 

and simplify the convolution of the two Catalan func- 
tions 

(43) VP = V ( N  ~. Cat i+ l (P  N) i ) ( .~  adj i) 
1 1 

so that the parser can also find VPs by just counting 
coccurrences of terminal symbols. Now we simplify 
(40a-b) so that S phrases can also be parsed by just 
counting occurrences of terminal symbols. First, 
translate (40a-b) into the equation: 

(44) S = N P V P A D J S  + V N P  ( I + P P )  ADJSADJS  

and then expand VP using (42) 

(45) S = NP (V NP ( I + P P )  ADJS) ADJS 
+ V NP ( I + P P )  ADJS ADJS 

and factor 

(46) S = (NP + 1) V N P  ( I + P P )  ADJS 2 

That can be simplified considerably because 

(47) NP (1 + PP) = N .E Cati(P N) i ~ Cati(P N) i 
1 1 

--- N .~ Cat i+ l (P  N) i 
1 

and 

(48) ADJS 2 = E adj i Y. adj i ___ ~ (i + 1)adj i 
i i i 

so that 

(49) S = ( N  .~Ca t i (PN)  i + 1) 
1 

V N .~ Cat i+ l (P  N) i 
1 

Y. (i + 1)adj i 
i 

which has the following ATN realization: 

(50) 

N " ~  Cati (p N)i V N " ~  Ca t i+ l  (p N) i 

Jump 

" ~  (i + l)adj i 

The entire example grammar has now been compiled 
into a form that is easier for parsing. This formula 
says that sentences are all of the form: 

(51) S ~* ( N ( P  N)*) V N  (P N)* adj* 

which could be recognized by the following finite state 
machine: 

(52) S: Jump Jump 

Jump 

~M.J Jump " ~  
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Fur the rmore ,  the number  of parse trees for  a given 
input sentence can be found by multiplying three num- 
bers: (a) the Catalan of the number  of P N's before  
the verb, (b) the Catalan of one more  than the num- 
ber of P N's after  the verb,  and (c) the ramp of the 
number  of adj's. For  example,  the sentence 

(53) The man on the hill saw the boy  with a tele- 
scope yesterday in the morning. 

has Cat  1 * Cat  2 * 3 = 6 parses.  That  is, there is one 
way to parse " the  man on the hill," two ways to parse 
"saw the boy with a te lescope"  ( " t e l e scope"  is either 
a complement  of " s e e "  as in (54a-c)  or is a t tached to 
" b o y "  as in (54d-f ) ) ,  and three ways to parse the 
adjuncts ( they could bo th  at tach to the S (54a,d),  or 
they could bo th  a t tach  to the VP (54b,e) ,  or they 
could split (54c,f)) .  

(54a) 

(54b) 

(54c) 

(54d) 

(54e) 

(54f) 

[The man on the hill [saw the boy with a tele- 
scope] [yesterday in the mornmg.]]  
The man on the hill [[saw the boy with a tele- 
scope] [yesterday in the morning.]]  
The man on the hill [[saw the boy with a tele- 
scope] yesterday]  in the morning. 
[The man on the hill saw [the boy with a tele- 
scope] [yesterday in the morning.]]  
The man on the hill [saw [the boy with a tele- 
scope] [yesterday in the morning.]]  
The man on the hill [saw [the boy with a tele- 
scope] yesterday]  in the morning. 

All and only these possibilities are permit ted by the 
grammar.  

10. C o n c l u s i o n  

We began our discussion with the observat ion that  
certain g rammars  are " eve ry  way amb iguous"  and 
suggested that  this observat ion could lead to improved 
parsing per formance .  Ca ta lan  g rammars  were then 
introduced to remedy the situation so that  the proc- 
essor can delay a t tachment  decisions until it discovers 
some more useful constraints.  Until such time, the 
processor  can do little more than note that  the input 
sentence  is " e v e r y  way ambiguous . "  We suggested 
that  a table lookup scheme might be an effective me-  
thod to implement  such a processor.  

We then introduced rules for combining primitive 
grammars,  such as Catalan grammars ,  into composi te  
grammars .  This linear systems view "bundles  up"  all 
the parse trees into a single concise description capa-  
ble of telling us everything we might want  to know 
about  the parses (including how much it might cost to 
ask a particular question).  This abst ract  view of ambi-  
guity enables us to ask questions in the most  conven-  
ient order,  and to delay asking until it is clear that  the 
pay -o f f  will exceed the cost. This abs t rac t ion  was 

very s trongly inf luenced by the not ion of delayed 
binding. 

We have presented combinat ion  rules in three dif- 
ferent  representa t ion  systems: power  series, ATNs, and 
context - f ree  grammars ,  each of which contr ibuted its 
own insights. Power  series are convenient  for  defining 
the algebraic operat ions,  ATNs are most  suited for 
discussing implementa t ion  issues, and con tex t - f ree  
grammars  enable the shortest  derivations.  Perhaps  the 
fol lowing quota t ion  best  summar izes  our  mot iva t ion  
for  al ternating among these three representa t ion  sys- 
tems: 

A thing or idea seems meaningful only when we have several 
different ways to represent it - different perspectives and differ- 
ent associations. Then you can turn it around in your mind, so to 
speak; however, it seems at the moment you can see it another 
way; you never come to a full stop. (Minsky 1981, p. 19) 

In each of these representa t ion  schemes,  we have 
in t roduced five primit ive g rammars :  Cata lan ,  Uni t  
Step, 1, and 0, and terminals;  and four  composi t ion 
rules: addition, subtract ion,  multiplication, and divi- 
sion. We have seen that  it is of ten possible to employ  
these analytic tools in order  to re-organize  (compile) 
the g rammar  into a fo rm more  suitable for  processing 
efficiently.  We have identif ied cer ta in  si tuations 
where  the ambigui ty  is combina tor ic ,  and have 
sketched a few modificat ions to the g rammar  that  ena- 
ble processing to proceed  in a more efficient manner .  
In particular,  we have observed it to be impor tant  for  
the g rammar  to avoid referencing quantit ies that  are 
not easily determined,  such as the dividing point  be-  
tween a noun phrase and a preposi t ional  phrase as in 

(55) Put the block in the box on the table in the 
kitchen ... 

We have seen that  the desired re-organiza t ion  can be 
achieved by taking advantage of the fact  that  the auto-  
convolut ion of a Cata lan  series produces  another  Ca-  
talan series. This reduced processing time f rom O(n  3) 
to almost  linear time. Similar analyses have been dis- 
cussed for a number  of lexically and structurally ambi-  
guous construct ions,  culminating with the example  in 
sect ion 9, where  we t r ans fo rmed  a g r ammar  into a 
form that  could be parsed by a single lef t - to-r ight  pass 
over  the terminal  elements.  Current ly,  these g rammar  
re formula t ions  have to be p e r f o r m e d  by  hand.  It  
ought to be possible to au tomate  this process so that  
the reformulat ions could be pe r fo rmed  by a g rammar  
compiler.  We leave this project  open for future re- 
search. 
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