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This paper proposes that the process of language understanding can be modeled as a collective 
phenomenon that emerges from a myriad of microscopic and diverse activities. The process is 
analogous to the crystallization process in chemistry. The essential features of this model are: 
asynchronous parallelism; temperature-controlled randomness; and statistically emergent active 
symbols. A computer program that tests this model on the task of capturing the effect of context 
on the perception of ambiguous word boundaries in Chinese sentences is presented. The program 
adopts a holistic approach in which word identification forms an integral component of sentence 
analysis. Various types of knowledge, from statistics to linguistics, are seamlessly integrated 
for the tasks of word boundary disambiguation as well as sentential analysis. Our experimental 
results showed that the model is able to address the word boundary ambiguity problems effectively. 

1. Introduction 

This paper suggests that the language understanding process can be effectively mod- 
eled as the statistical outcome of a large number of independent activities occurring 
in parallel. There is no global controller deciding which processes to run next. All pro- 
cessing is done locally by many simple, independent agents that make their decisions 
stochastically. The system is self-organizing, with coherent behavior being a statisti- 
cally emergent property of the system as a whole. The model, in a nutshell, simulates 
language understanding as a crystallization process. This process consists of a series 
of hierarchical, structure-building activities in which high-level linguistic structures 
are formed from their constituents and get properly hooked up to each other as the 
process converges. 

The essential features of the model are: 

• The process of sentence analysis is a series of computational activities 
that determine how various constituents in a sentence can be 
meaningfully related. 
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• All computational activities are carried out by a large number of 
procedures known as codelets. 

• A linguistic structure is not built by a single codelet. Rather, it is 
constructed by a sequence of codelets. The execution of this sequence of 
codelets is interleaved with other codelets that are responsible for 
building other structures. 

• The order by which structures are built is not explicitly programmed, 
but is an emergent outcome of chains of codelets working in an 
asynchronous parallel mode. 

• Computational activities are a combination of top-down and bottom-up 
activities. 

• Computational activities are indirectly guided by a semantic network of 
linguistic concepts, which ensures that these activities do not operate 
independently of the system's representation of the context of a sentence. 

• Decision making is stochastic, with the amount of randomness being 
controlled by a parameter known as the computational temperature. 

We have applied our model to the task of capturing the effect of context on the 
perception of ambiguous word boundaries in Chinese sentences (Gan 1993). Our ap- 

- proach differs from existing work on Chinese word segmentation (Liang 1983; Wang, 
Wang, and Bai 1991; Fan and Tsai 1988; Chang, Chen, and Chen 1991; Chiang et al. 
1992; Sproat and Shih 1990; Wu and Su 1993; Lua and Gan 1994; Lai et al. 1992; Sproat 
et al. 1994; Sproat et al. 1996) primarily in that our system performs sentence inter- 
pretation, in addition to word boundary identification. Our system figures out where 
the word boundaries of a sentence are by determining how various constituents in 
a sentence can be meaningfully related. The relations the system builds represent its 
interpretation of the sentence. In the initial stage of a run, the system constructs re- 
lations between characters of a sentence. Through a spreading activation mechanism, 
the system gradually shifts to the construction of words and of relations between 
words. Later, the system progresses to identifying and constructing chunks (in other 
words, phrases), and to establishing connections between chunks. Note that there is 
no top-level executive that decides the order of these activities. At any given time, the 
system stochastically selects one action to execute. Therefore, efforts toward building 
different structures are interleaved, sometimes cooperating and sometimes competing. 
The system's high-level behavior, therefore, arises from its low-level stochastic actions. 

We will give a detailed description of this application in this paper. In Section 2, we 
introduce the problem of ambiguous Chinese word boundary perception, and follow, 
in Section 3, with a summary of the current practices in Chinese word identification. We 
describe our model in Section 4, showing a sample run of our program in Section 5 to 
illustrate the behavior of the model. Finally, some discussions of the model are covered 
in Section 6. In Section 7, we compare our model with others, and explore areas for 
future research in Section 8. 

2. Ambiguous Chinese Word Boundary Perception 

A written Chinese sentence consists of a series of evenly spaced Chinese characters. 
Each character corresponds to one syllable. A word in Chinese can be made up of 
a single character, such as OK f?m 'rice', or it can be a combination of two or more 
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characters, such as ~ shu~gu6 'fruit'. It is possible that the component characters of 
a word are fre@, such as ;~ shut and ~ gu6 of the word ;q<~ shu~gu6 'fruit', which 
mean 'water'  and 'fruit' respectively. For any two Chinese characters in a sentence, 
denoted as x and y, if xy cannot be combined together to function as a word, a single 
word boundary exists between these two characters. If x and y can be constituents of 
the same word, yet at the same time may also be free, then word boundary ambiguity 
exists in these two characters. If there is a unique word boundary before x and after 
y, we refer to the ambiguity existing in xy as a combination ambiguity. On the other 
hand, if there is a word boundary ambiguity between the characters xy and the char- 
acter that precedes or follows them, say z, and these three characters can be grouped 
into either xy z or x yz, then we say that an overlap ambiguity exists. A sentence 
that allows an ambiguous fragment to have multiple word boundaries will end up 
with more than one interpretation. This type of ambiguity is called global ambiguity 
with respect to the sentence. On the other hand, if only one way of segmenting the 
word boundary of an ambiguous fragment is allowed in a sentence, we call this local 
ambiguity with respect to the sentence. Global ambiguity can only be resolved with 
discourse knowledge. An example for each category is shown in (1) t o  (4). 2 Through- 
out this paper, we follow the guidelines on Chinese word segmentation adopted in 
China. 3 

Overlap, Local Ambiguity 

(1) 
zh~ w~i zhiyudn gOngzu6 de yali hOn da 
t h i s  C L  4 worker work STRUC 5 pressure very great 
'This worker faces great pressure in his work.' 

The underlined fragment ~ 1 2 ~  yudn gOngzuD in (1) has overlap, local ambiguity. 
The middle character I gDng can combine with the previous character ~ yudn to 
form the word H I  yudngong 'worker', leaving the third character functioning as a 
monosyllabic word ~ zuD 'do'. The middle character can also combine with the next 
character to form the word X2~ gongzuD 'work', leaving the first character alone. 
The sentence containing this fragment allows only one way of segmenting the word 
boundary, which is shown in (1). The character ~ yudn combines with the character 
preceding it, lI~ zhi, to form the bisyllabic word ~ zhiyudn 'worker', and the two 
characters 32 gong and ~ zuD form a word. 

Overlap, Global Ambiguity 

(2)a. 
w?Smen y~o xuesh~ng hu6 d6 y6u yiyi 
we want student live C S C  6 have meaning 
'We want our students to have a meaningful life.' 

1 A free character is one which can occur independent ly  as a word  (Li and Thompson 1981). 
2 The characters under l ined in sentences (1) to (4) are the locations of word  boundary  ambiguities we  

would  like to focus on. This convention will be used throughout  in this paper. 
3 See Contemporary Chinese Language Words Segmentation Standard Used for Information Processing, fifth 

edition, 1988, published in China. 
4 CL stands for a CLassifier. 
5 STRUC stands for the STRUCture word  ~ de. 
6 CSC stands for the Complex Stative Construction word  ~ de. 
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b. 
w{~men y?~o xuf sh~nghu6 d6 y6u yiyi 
we want learn life CSC have meaning 
'We want to learn how to lead a meaningful life.' 

The fragment _~e_~ xud shdng hu6 also has overlap ambiguity, where the middle 
character can either combine with the first character to form a word, or combine with 
the last character to form a word. The sentence containing this fragment has two 
plausible interpretations as shown in (2a) and (2b). Both alternations: ~ ~ xudshdng 
hu6 'student live' (2a) and -~ ~41.~ xu~ sh~nghu6 'learn life' are acceptable. 

Combination, Local Ambiguity 

(3) ~)~ ~ ~ I ]  -]-~j~ ~ 
nr de bidoqing shff~n hudj~ 
you STRUC look very funny 
'You look very funny.' 

In (3), the two characters in the fragment nt '~ shif~n can either function as two au- 
tonomous words q~ shi ' ten' and ~ f~n 'mark', or they can combine together to function 
as a bisyllabic word f f ' ~  shif~n 'very'. Given the sentential context of (3), however, 
only the second alternation is correct. 

Combination, Global Ambiguity 

(4)a. ~ ~ ~l~ ~__ ]~ 
w6men dou h~n n~n gub 
we all very hard live 
'We all have a hard life.' 

b. 
wfimen dou h~n ngmgub 
we all very sad 
'We all feel very sad.' 

The fragment ]~]~ ngmgub also has combination ambiguity. It differs from (3) in that the 
sentence in which it appears has two plausible interpretations. Hence, this fragment 
can either be segmented as ~l~ ndm 'hard' and i~ gub 'live' in (4a), or as ~ i ~  n~ngub 
'sad' in (4b). 

Word boundary ambiguity is a very common phenomenon in written Chinese, 
due to the fact that a large number of words in modem Chinese are formed from 
free characters (Chao 1957). The problem also exists in continuous speech recognition 
research, where correct interpretation of word boundaries in an utterance requires lin- 
guistic and nonlinguistic information. However, people have a fascinating ability to 
fluidly perceive groups of characters as words in one context but break these groups 
apart in a different context. This human capability highlights the fact that there is a 
continual interaction between word identification and sentence interpretation. We are 
therefore motivated to study how our statistically emergent model can be used to sim- 
ulate the interactions between word identification and sentence analysis. In particular, 
we want to study how the model (i) handles fragments with local ambiguities, such 
as those in sentences (1) and (3), when they appear in different sentential contexts and 
(ii) handles fragments with global ambiguities, such as those in sentences (2) and (4), 
when there is no discourse information. 
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3. Existing Approaches 

Traditionally, word identification has been treated as a preprocessing issue, distinct 
from sentence analysis. We will therefore only discuss current practices in word iden- 
tification, leaving sentence analysis aside. Several techniques have been used in word 
identification, ranging from simple pattern matching, to statistical approaches, to rule- 
based methods. The most popular pattern-matching method is based on the Maximum 
Matching heuristics, commonly known as the MM method (Liang 1983; Wang, Wang, 
and Bai 1991). This method scans a sentence from left to right. In each step, the longest 
matched substring is selected as a word by dictionary look-up. For example, in sen- 
tence (5), 

(5) 
fisu~nj~ de f~ming y~y~ zh6ngda 
computer STRUC invention implication profound 
'The invention of the computer has profound implications.' 

the first three characters are identified as the word ~ t~J~  fisu~nfi'computer' because it 
is the longest matched substring found in a word dictionary. With the same reasoning, 
the words ~ de 'STRUC', ~ faming 'invention', ~ y~y~ 'implication', and ~ 
zhbngd~ 'profound' are identified. 

Statistical techniques include the relaxation approach (Fan and Tsai 1988; Chang, 
Chen, and Chen 1991; Chiang et al. 1992), the mutual information approach (Sproat 
and Shih 1990; Wu and Su 1993; Lua and Gan 1994), and the Markov model (Lai 
et al. 1992). These approaches make use of co-occurrence frequencies of characters 
in a large corpus of written texts to achieve word segmentation without getting into 
deep syntactic and semantic analysis. For example, the relaxation approach uses the 
usage frequencies of words and the adjacency constraints among words to iteratively 
derive the most plausible assignment of characters into word classes. First, all possi- 
ble words in a sentence are identified and assigned initial probabilities based on their 
usage frequency. These probabilities are updated iteratively by employing the consis- 
tency constraints among neighboring words. Impossible combinations are gradually 
filtered out, leading to the identification of the most likely combination. The mutual 
information approach is similar to the relaxation approach in principle. Here, mutual 
information is used to measure how strongly two characters are associated. The mu- 
tual information score is derived from the ratio of the co-occurrence frequency of two 
characters to the frequency of each character. In a sentence, the mutual information 
score for each pair of adjacent characters is determined. The pair having the highest 
score is grouped together. The sentence is split into two parts by the two characters 
just grouped. The same procedure is applied to each part recursively. Eventually, all 
word boundaries will be identified. 

Both the pattern-matching and the statistical approaches are simple and easy to 
implement. It is well known, however, that they perform poorly when presented with 
ambiguous fragments that have alternate word boundaries in different sentential con- 
texts. For instance, the fragment - ~  shif~n, which is a bisyllabic word in sentence 
(3a), functions as two separate word, s in sentence (6). 

(6) 
t~ zhr kao d~o shi fen 
he only score ASP ten mark 
'He scores only ten marks.' 
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The MM method will regard this fragment as a bisyllabic word nutj " shff~n 'very' 
regardless of the sentential context in (3a) and (6), since this word is longer than the 
lengths of the two monosyllabic words n u shf 'ten' and ~ f~n 'mark'. As a result, 
this method fails to correctly identify the word boundaries in sentence (6). Within 
statistical approaches, considering, for example, the mutual information method (Lua 
and Gan 1994), the same fragment is identified as a bisyllabic word in both sentences 
(3a) and (6) 7. 

By checking the structural relationships among words in a sentence, rule-based 
approaches aim to overcome limitations faced by pattern-matching and statistical ap- 
proaches. However, many of the rules in existing rule-based systems (Huang 1989; 
Yao, Zheng, and Wu 1990; Yeh and Lee 1991; He, Xu, and Sun 1991; Chen and Liu 
1992) are either arbitrary and word-specific, or overly general. For example, 

Rule 
Given an ambiguous fragment xyz where x, z, xy, and yz are all possible words, if 
x can be analyzed as a so-called direction word, segment the fragment as x yz, else 
segment it as xy z (Liang 1990). 

This syntactic rule works in sentence (7). 

(7) ~ ~ -[ v ~--~ 
t~ ff~ xi?~ shenzi 
he bend down body 
'He bends down his body.' 

The fragment T : ~  xi?~ shen zi in sentence (7) is ambiguous. As -F xi?~ 'down'  is a 
direction word, the fragment is segmented as -~ ~:j~ xi?l sh@nzi 'down body',  which 
is as desired. 

Similarly, this rule will segment the fragment ~]~lJ~ w?li gu6 r~n as ~ [~l),, w?~i 
gu6rdn 'out citizen', since ~ w?zi 'out '  is also a direction word. Therefore, when this 
fragment appears in sentence (8a), 

(8)a. ~ ;~ P~I~J~ 
ta sh~ w?~igu6r~n 
he COPULA foreigner 
'He is a foreigner.' 

the word boundaries identified will be: 

t4 sh~ w?d gu6r~n 
he COPULA out citizen 

which is incorrect. 
Examples (7) and (8) illustrate that although syntactic information has been incor- 

porated in word segmentation, there are still errors. In contrast, people are extremely 
flexible in their perception of word boundaries of ambiguous fragments appearing in 
different sentential contexts. We believe that the separation of word identification from 
the task of analysis accounts for the difference in performance. This has motivated us 
to study how word identification and sentence analysis can be integrated. 

7 This result is reported in Gan (1994). 
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4. The Statistically Emergent Model 

This model is inspired by the work done in the Fluid Analogies Research Group (Hof- 
stadter 1983; Meredith 1986; Mitchell 1990; French 1992). There are four main compo- 
nents in this model. Namely, (i) the conceptual network, which is a network of nodes 
and links representing some permanent linguistic concepts; (ii) the workspace, which 
is the working area in which high-level linguistic structures representing the system's 
current understanding of a sentence are built and modified; (iii) the 
coderack, which is a pool of structure-building agents (codelets) waiting to run; and 
(iv) the computational temperature, which is an approximate measure of the amount 
of disorganization in the system's understanding of a sentence. 

4.1 The Conceptual Network 
This is a network of nodes and links representing some permanent linguistic concepts 
(Figure 1). 

In the network, a node represents a concept. For example, the node labeled charac- 
ter represents the concept of character; the node word represents the concept of word; 
the node chunk represents the concept of chunk; the nodes character-l, character-2, up 
to character-n represent the actual characters in a sentence; the affix and affinity nodes 
represent the concepts of relations between characters; the nodes classifier, reflexive ad- 
jective, structure, etc., represent the concepts of relations between words; the nodes 
agent, patient, theme, etc., represent the concepts of relations between chunks. 

A link represents an association between two nodes. There are four types of links: 
(i) category-of links, or is-a links, which connect instances to types, for example, 
the connections from character-I, character-2, up to character-n to the character node; 
(ii) has-instance links, the converse of category-of links; (iii) has-relation links, which 
associate a node with the relations it contributes, for example, the connection from 
the character node to the affix node represents that the character node contributes to 
the character-based relation named as affix; (iv) part-of links, which represent part-of 
relations between two nodes. The direction of a part-of link, for instance, the link from 
the character node to the word node, is interpreted as 'the character is part of the word'. 

During a run of the program, nodes become activated when perceived to be rele- 
vant, and decay when no longer perceived to be relevant. Nodes also spread activation 
to their neighbors, and thus concepts closely associated with relevant concepts also 
become relevant. The activation levels of nodes can be affected by processes that take 
place in the workspace. Several nodes in the network (e.g., agent, patient, word, chunk, 
etc.), when activated, are able to exert top-down influences on the types of activities 
that may occur in the workspace in subsequent processing. The context-dependent 
activation of nodes enables the system to dynamically decide what is relevant at a 
given point in time, and influences what types of actions the system engages in. 

4.2 The Workspace 
The workspace is meant to be the region where the system does the parsing and 
construction required to understand a sentence. This area can be thought of as corre- 
sponding to the locus of the creation and modification of mental representations that 
occurs in the mind as one tries to form a coherent understanding of a sentence. The 
construction process is done by a large number of processing agents. 

Figure 2 shows an example of a possible state of the workspace when the system 
is processing sentence (9). 
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* / /q patient 

I predlicate f/---q theme ] 
, ~,'- i J X\~-~ classifier 

i I i ~  , , ~  / re 
.~ \ I ~ n e l . . . a ~ j ~ c ~ w  
: \ / / / ,  structur~ 

[charact~r_l I ' \ .'.. ~ _ _  
: \ " f / _ _ C  _, coo~.tion I re , ~ //___ 

i character-2 l \  : /lexical marker ~ , ~ -  -... - . . .  complex [ 
I~\ , \4 ~ ,.\ ~ stative I [character-3 I \ \  , \4  ~ \ \ construction 

rt \ \  : ~ ' ~ '  X" "-4 judgment 

I ¢hara~ter-n l ' -"t  c.ara~t~r r', \ \\ ,, ,,~1 quantity I 
a.ff~ty \ \ \ \  \ "~ i \\\\ d manner [ 

\\ \ \  ~ degree I 
L < nds: 

< r- has-instance & category-of link \ X. direction ] 
- - - - >  has-relation link \ demonstrative J 
. . . .  • part-of link question[ 

Figure 1 
The conceptual network. 

(9) ~ ~.X. ~ T' - -  ~ ~ 
t~ b6nr~n sh~ng le s~n g~ hfiizi 
she self give birth ASP three CL child 
'She herself has given birth to three children.' 

There are three types of objects that may exist in the workspace: character objects, 
word objects, and chunk objects. The Chinese characters in Figure 2 not enclosed by 
rectangles, namely, the characters _~ s4n and ~I g~, are character objects. When a few 
Chinese characters are enclosed by a rectangle, for example ~,/k b6nr~n, it indicates 
that these characters make up a word object. The constituent characters of the word 
still exist in the workspace but they become less explicit in the figure. If a group 
of characters is enclosed by two rectangles, for example, the character ~1~ sh~ng, it 
indicates that a chunk object exists, made up of word objects. In short, the immediate 
constituents of a word object are character objects, and those of a chunk object are 
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reflexive adjective aspectual 

affinity 

I T 
affix 

Figure 2 
A possible state of the workspace. 

Types of relations 

Non-linguistic - -  

Linguistic 

Figure 3 
An overview of the types of relations. 

statistical 

between character objects 

between word objects 

between chunk objects 

word objects. It is possible to have unitary constituency whereby one object is the 
only part of another object. The chunk object ~l~ sh~ng 'give birth' is an example. 

Each object in the workspace has a list of descriptions not shown in Figure 2. 
For example, descriptions of character objects include their morphological category 
(stem/affix) and whether they are bound or unbound. 8 Descriptions of word objects 
include their categorial information and sense. Descriptions of chunk objects may also 
include these two descriptions, except that here, these two descriptions are derived 
from the category and the sense of the word that is the governor. 

The directed arc connecting two objects in Figure 2 denotes a linguistic relation 
between the objects connected. We adopt the dependency grammar notation (Tesni6re 
1959; Mel'~uk 1988) in which the object pointed to by an arrow is the dependent while 
the object where the arrow originates is the governor. The undirected arc connecting 
the characters ~ hdi and ~ zi in Figure 2 represents a statistical relation, and statistical 
relations are undirected in our representation. 

An overview of our classification of relations is shown in Figure 3. 
A list of all types of relations is summarized in Table 1; a detailed exposition can 

be found in Gan (1994). 
In Figure 2, the connection between the word objects ~ ta 'she' and ~.h. b~nr~n 

'self' is a reflexive adjective relation, the connection between the word objects ~ sh~ng 
'give birth' and -j" le 'ASP' is an aspectual relation, and the two arcs connecting the 
character objects ~ hdi and --~ zi are affix and affinity relations. 

8 A bound character cannot occur independently as a word. 
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Table 1 
A list of all types of relations. 

Object T y p e  Relation Type Example 
Object 1 Object 2 

character affinity relation -~- 
character affix relation ~ 
word classifier relation (~ 'CL' ~f~ 'snake' 
word reflexive adjective relation ~lJ~] 'they' 2~]" 'self' 
word structure relation i~1 'STRUC' .~J~ 'father' 
word coordination relation ~11 'and' ~]~1~I 'Lisi' 
word adjective relation ~- 'blue' ~ 'sky' 
word complex stative relation ~ 'STRUC' ~ 'good' 
word attitude relation ~J~ 'really' ~ 'go' 
word disposal relation ~] 'BA' ]~ 'door' 
word quantity relation ~J~] 'we' ~ 'all' 
word manner relation ~ 'able' II~I 'sing' 
word degree relation ~[~ 'very' ~ [~  'nervous' 
word aspectual relation ]~ 'sleep' ~ 'ASP' 
word direction relation ~:-~ 'table' _]~ 'on' 
word demonstrative relation ~ 'this' ,,~, 'fish' 
word interrogative relation ~ -~  'what' I ~  'time' 
chunk agent relation ~[~ 'he' ~]'(6~ T 'broke' 
chunk patient relation [~ 'door' ~ *  'broke' 
chunk theme relation ~ 'chant' .~ 'scripture' 
chunk source relation ~ [] 'from China' [ ~  'return' 
chunk goal relation ~1]]~ ~]~ 'to room' ~ 'get' 
chunk time relation @ ~  'today' ~i~J]~ 'not well' 

4.3 The Coderack 
The building of linguistic structures (e.g., word and chunk objects, descriptions of 
objects, relations between objects) is carried out by a large number of agents known 
as codelets. These codelets reside in a data structure called the coderack. A codelet is 
a piece of code that carries out some small, local task that is part of the process of 
building a linguistic structure. For example, one codelet may check for the possibility 
of building an aspectual relation between the words ~4~ sh~ng 'give birth' and -Tle  
'ASP' of sentence (9). There are several codelet types. Each type is responsible for 
building one of the relations shown in Table 1. In addition, there are word and chunk 
codelet types, which are responsible for the construction of words and chunks. Two 
special codelet types, namely, breaker and answer, will be explained in Section 5. Here, 
we make a distinction between codelets and codelet type. The latter is a prewritten 
piece of code while the former are instances of the latter. 

In the initial stage when the program is presented with a sentence, the default 
codelets initialized in the coderack are affix and affinity codelets. They will construct 
relations between character objects. Some default bottom-up word codelets are also 
posted to determine whether monosyllabic words could be constructed from character 
objects. When the word node in the conceptual network becomes activated by activation 
spreading from the character node, more top-down word codelets will be posted. When 
word objects are constructed, nodes denoting relevant relations between words will be 
activated. These nodes in turn cause the posting of codelets that will build relations 
between word objects. Again, by activation spreading to the chunk node, codelets 
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building chunk objects will be posted, which will further lead to the posting of codelets 
that determine how chunk objects can be related. 

Note that there is no top-level executive deciding the order in which codelets 
are executed. At any given time, one of the existing codelets is selected to execute. 
The selection is a stochastic one, and it is a function of the relative urgencies of all 
existing codelets. The urgency of a codelet is a number assigned at the time of its 
creation to represent the importance of the task that it is supposed to carry out (this 
is an integer between 1 to 7, with 1 as the least urgent and 7 as the most urgent). 
Many codelets are independent and they run in parallel. Therefore, efforts towards 
building different structures are interleaved, sometimes co-operating and sometimes 
competing. The rate at which a structure is built is a function of the urgencies of its 
dedicated codelets. More promising structures are explored at high speeds and others 
at lower speeds. Almost all codelets make one or more stochastic decisions, and the 
high-level behavior of the program arises from the combination of thousands of these 
very small choices. In other words, the system's high-level behavior arises from its 
low-level stochastic substrate. To summarize, the macroscopic behavior of the system 
is not preprogrammed; the details of how it emerges from the low-level stochastic 
architecture of the system are given in Sections 5.2 and 5.3. 

4.4 The Computational Temperature 
The computational temperature is an approximate measure of the amount of coherency 
in the system's interpretation of a sentence: the value at a given time is a function of 
the amount and quality of linguistic structures that have been built in the workspace. 
The computational temperature is in turn used to control the amount c~f randomness 
in the local action of codelets. If many good linguistic structures have been built, the 
temperature will be low, and the system will make decisions less randomly. When 
few good linguistic structures have been found, the temperature will be high, leading 
to many more random decisions and hence to more diverse paths being explored by 
codelets. 9 

The notion of temperature used here is similar to that in simulated annealing 
(Kirkpatrick, Gelatt, and Vecchi 1983). Both start with a high temperature, allowing all 
sorts of random steps to be taken, and slowly cool the system down by lowering the 
temperature. However, the decrease in temperature in our system is not necessarily 
monotonic. It varies according to the amount of coherency in the system's interpreta- 
tion of a sentence. Thus, our system has an extra degree of flexibility, which allows 
uphill steps in temperature; in effect, this means that the system is annealing at the 
metalevel as well. 

5. An Example 

We will use a sample run of the program on sentence (9) to illustrate many central 
features of the model, including the selection of a codelet; the selection of competing 
alternatives; the interaction between the workspace and the conceptual network; etc. 
Note that this section would be overwhelmed with details if a step-by-step explanation 
were given. A detailed trace of the system's execution on this sentence can be found 
in Gan (1994), and a short description of the program's behavior can be found in Gan 
(1993). Here, only selected snapshots are highlighted. 

Sentence (9) is an example with local, overlap, and combination ambiguities in the 

9 "Diverse paths" refers to different ways of analyzing the structure of a sentence. 
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Table 2 
Initial state of the coderack. 

Codelet Type Urgency (U) Temperature-regulated Urgency Quantity 
Ut = 100 Ut = 0 

word 2 2 16 14 
affinity 3 2 81 20 
affix 3 2 81 8 

fragment :~:,K~ b~n r~n sh~ng. Without considering the sentential context, these three 
characters have three possible word boundaries: :~ d~ ~L b~n rfn sh~ng 'CL human give 
birth', ~ , ~  ~ b~nr~n sh~ng 'self give birth' or ~ ,~e~_ b~n r~nsh~ng 'CL life'. Given the 
sentential context of (9), however, only the second alternative is correct. 

5.1 Initial Setup 
When the parsing process starts, the program is presented with the sentence. The 
temperature is clamped at 100 for the first 80 cycles to ensure that diverse paths 
are explored initially (the range of the temperature varies between 0 and 100). A 
cycle is the execution of one codelet. The number 80 is decided based on intuition 
and trial-and-error; it is not necessarily optimal. The workspace is initialized with 
nine character objects, each corresponding to a character of the sentence. Since the 
workspace contains only character objects, the only relevant concepts are: character, 
affinity, affix, and each character of the sentence. The corresponding nodes in the 
conceptual network, namely: character, affinity, affix, ~ ta, ~ b~n, up to ~ zi, are set 
to full activation. Fourteen instances of word codelet are posted to the coderack. They 
are responsible for identifying and constructing monosyllabic words. Twenty instances 
of affinity codelet are also posted to identify and construct affinity relations between 
characters. Eight instances of affix codelet are posted to identify and construct affix 
relations between characters. In general, the number of codelets posted is a function 
of the length of a sentence. 

5.2 Selection of a Codelet  
Among all codelet instances that exist in the coderack, only one of them is stochas- 
tically selected to execute each time. The choice of which codelet instance to execute 
depends on three factors: (i) its urgency, (ii) the number of codelet instances in the 
coderack that are of the same type as the individual instance, and (iii) the current 
temperature. At cycle 0, the coderack contains the statistics as shown in Table 2. 

The temperature-regulated urgency (Lit) is derived in the following way: 

Ut = U ~120-t)/30 (1) 

where t denotes the temperature, which ranges between [0,1001. This equation is used 
to magnify differences in urgency values when the temperature is low. Conversely, at 
high temperatures, it will minimize differences in urgency values. The idea is to let 
the system explore diverse paths when the temperature is high, while always stick to 
one search path when the temperature is low. 

At cycle 0 where the temperature is 100, the temperature-regulated urgencies of 
the three codelet types are the same. The probability of selecting an instance of a word 
codelet, an affinity codelet, and an affix codelet is 33.3%, 47.6%, and 19.1% respectively. 
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I I 
affinity 

Figure 4 
State of the workspace at cycle 17. 

These probabilities are derived as follows: 

Uj, t x Qj (2) P'(G)= u 
 i=1( i,t X Qi)  

where Qi and Qj are the quantities of codelet types Ci and Cj respectively, Ui, t and Uj, t 
are the urgencies of codelet types Ci and Cj at temperature t respectively, and n is the 
total number of codelet types. 

Supposing that the coderack contains the same types of codelets with the same 
quantities, but the temperature is 0, the probability of selecting an instance of a word 
codelet, an affinity codelet, and an affix codelet becomes 8.99%, 65.01%, and 26.00% 
respectively. Therefore, at low temperatures, codelets with high urgency are preferred. 

5.3 Construction of Linguistic Structures 
Linguistic structures include high-level objects (words and chunks) and relations be- 
tween two objects (see Table 1). In this run, for example, an affinity relation between 
the character objects ~: b~n and ),, rdn is constructed by an instance of an affinity 
codelet at cycle 17 (Figure 4). 

An affinity codelet works on any two adjacent character objects to evaluate whether 
an affinity relation should be built between these two characters. The affinity relation 
is a quantitative measure that reflects how strongly two characters co-occur statis- 
tically. It is derived from mutual information (Fano 1961), which is the probability 
that two characters occur together versus the probability that they are independent. 
Mathematically, it is: 

P(a,b) 
A(a, b) = log 2 P(a)P(b) (3) 

where A(a, b) is the affinity relation between the character objects a and b, P(a, b) is 
the probability that the two character objects co-occur consecutively, P(a) and P(b) are 
the probabilities that a and b occur independently. To derive affinity relations between 
characters, we have the usage frequencies of 6,768 Chinese characters specified in the 
GB2312-80 standard, and the usage frequencies of 46,520 words derived from a corpus. 
The total usage frequency of these words is 13,019,814. (The data was obtained from 
Liang Nanyuan, Beijing University of Aeronautics and Astronautics.) 

Note that efforts towards building different structures are interleaved, as many 
codelets are independent and they run in parallel. Apart from the initial set of codelets 
present at the onset of processing, new codelets are sometimes created by old codelets 
to continue working on a task in progress, and these codelets may in turn create other 
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codelets, and so on. The cycle in which a structure is built is not preprogrammed. 
Rather, it emerges from the statistics of the interaction of all codelets in the coderack. 

5.4 Selection of Competing Structures 
It may happen that a structure being constructed is in conflict with an existing struc- 
ture. In this run, for example, an affinity relation between the characters .£. r~n and 
shgng is being considered at cycle 79. This structure is in conflict with the previously 
constructed affinity relation between the characters dg b~n and .),. r~n. The decision 
about which competing structure should win is decided stochastically as a function 
of two factors: (i) the strengths of the competing structures, and (ii) the temperature. 
The strength of a structure is an approximate measure of how promising the structure 
is. It is an integer ranging between 0 and 100, inclusive. The strengths of different 
structures are derived according to either linguistic knowledge encoded in the lexicon 
or certain statistical measures. Equation (3) is a key factor in deriving the strength of 
an affinity relation. In this run, the strength of the proposed affinity relation between 
the characters .£. r~n and ~ sh~ng is 55, while that of the existing affinity relation 
between the characters ~ b~n and ),. r~n is 56. These two values are adjusted by the 
temperature according to equation (4). 

St ~ S (120-t)/40 (4) 

where St is the temperature-regulated strength, S is the original strength, and t is 
the temperature. The effect of equation (4) is similar to equation (1): to maximize 
differences in strength values at low temperatures, and to minimize differences at 
high temperatures. At cycle 79, the temperature is still clamped at 100, and hence the 
temperature-regulated strengths of these two competing structures are both 7 (rounded 
up to the nearest integer). The decision about which structure should win is therefore 
a random one, as both have an equal probability of success. According to equation (4), 
at low temperatures, it is increasingly difficult for a new structure of lesser strength to 
win in competition against existing structures of greater strength. Since the system's 
behavior is more random at high temperatures, it is able to explore diverse paths in 
the initial stage when little structure has been built. When a large number of structures 
deemed to be good have been found, which entails a low temperature, the system will 
proceed in a more deterministic fashion, always preferring good paths to bad ones. 
Indeed, in this case, the new affinity relation between the characters .£. r~n and 
shgng has won. Instead of destroying the affinity relation between the characters 
b~n and ),. r~n, this structure is retained, but it becomes dormant in the workspace. 

5.5 The interaction between the Workspace and the Conceptual Network 
Activated nodes in the conceptual network spread activation to their neighbors, and 
thus concepts closely related to relevant concepts also become relevant. In this run, 
for example, the nodes word and chunk become activated at cycle 80 due to activation 
spreading from the character node. Activated nodes influence what tasks the system 
will focus on subsequently through the posting of top-down codelets. For example, at 
cycle 80, the activated word node causes the proportion of word codelets to increase 
to 93%. This is an important feature of the system: the context-dependent activation 
of nodes, which enables the system to dynamically decide what is relevant at a given 
point in time, and influences what actions to take through the posting of top-down 
codelets. 
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Figure 5 
State of the workspace at cycle 180. 

5.6 Detection and Resolution of Erroneous Structures 
By the end of cycle 180, the following structures have been built (Figure 5): 

active 
sh~ng, 
~- zi; 

active 

active 

relations: an affinity relation between the characters ,K, r~n and 
~dd hdi and -~ zi, an affix relation between the characters ~ hdi and 

word objects: ~zj~ hdizi 'child', ),.~4~ r~nsh~ng 'life', and :~ b~n 'CL'; 

chunk objects: ,K.~_ r~nsh~ng "life', and ~:j~ hdizi 'child'; 

dormant  relations: an affinity relation between the characters ~: b~n and 
r~n. 

Among them, the word ~ b~n 'CL' is a classifier. This word has activated the 
classifier node in the conceptual network, which in turn causes the posting of classifier 
codelets to the coderack. The responsibility of this type of codelet is to explore the 
possibility of establishing a classifier relation between a classifier and an object name. 1° 
The use of a classifier is in general idiosyncratic. This type of idiosyncrasy is encoded 
in the lexicon. Since ~ b~n cannot be the classifier of the object name ,K.~ r~nsh~ng 
'life', a special type of codelet known as a breaker codelet is posted to the coderack. 
The role of a breaker is to identify erroneous linguistic structures, and set them to 
dormant,  restoring any dormant  competing structure when  necessary. 

At cycle 187, a breaker codelet is executed that examines structures that are "in- 
trouble", namely, the words :~ b~n and ),,~4~ r~nsh~ng 'life'. Since the component  
characters of the second word can be free, the breaker codelet concludes that this is 
an erroneous grouping. The word yk.~4~ r~nsh~ng 'life' is made dormant.  The other 
structures that support  the word ,K.~ r~nsh~ng 'life', namely the affinity relation be- 
tween the characters ,K. r~n and ~ sh~ng and the chunk ,~.~-~ r~nsh~ng 'life', are also 
made dormant.  The competing alternative, the affinity relation between the characters 

b~n and ),, rdn, is reactivated. This snapshot also illustrates an important  feature 
of the system: syntactic analysis can be performed without  wait ing for the system to 
complete the task of word identification. 

10 The term object name is borrowed from Meaning-Text linguistics (Mel'~uk 1988). It refers to words that 
cannot have a semantic dependent. A more formal attempt to define this term can be found in 
Polgu6re (to appear). 
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Figure 6 
State of the workspace at cycle 373. 

5.7 The Final State 
Figure 6 shows the state of the workspace at the end of cycle 373. 

For easy reference, sentence (9) is repeated here: 

(9) ~ :~.K. ~ T G ~I ~x-~ 
ta b~nr~n sh~ng le san g~ h~izi 
she self give birth ASP three CL child 
'She herself has given birth to three children.' 

The list of structures built are: 

• active relations: an affinity relation between the characters ~ b~n and .~ 
r~n, ~ h~i and ~ zi, an affix relation between the characters ~ h~i and 

zi, a reflexive adjective relation between the words ~ ta 'she' and 
;4;.~ b~nr~n 'self', a classifier relation between the words ~ g~ 'CU and 
~ h~izi 'child', a quantity relation between the words ~ san 'three' 
and ~ : ~  h~izi 'child', an aspectual relation between the words ~ sh~ng 
'give birth' and ~ le 'ASP'; 

• active words: ~ ta 'she', :~:.J~ b~nr~n 'self', ~ sh~ng 'give birth', T l e  
'ASP', -~ san 'three', ~l g~ 'CU, and ~ h~izi 'child'; 

• active chunks: ~:4:.~ ta b~nr~n 'she herself', P4~ sh~ng 'give birth', and 
~--.{~l~x~ san g~ h~izi 'three CL children'; 

• dormant relations: an affinity relation between the characters K r~n and 
sh~ng; 

• dormant words: d~-I~ r~nsh~ng 'life'; 

• dormant chunks: ) , ~  r~nsh~ng 'life'. 

Comparing the above structures with the complete analysis of the sentence in 
Figure 7 (for simplicity, we have omitted relations between characters in Figure 7), 
it is observed that the system has not yet constructed the agent and theme relations. 
They were not identified because the system has come to a stop at cycle 381, after 
an instance of answer  codelet was executed. This type of codelet reports on the word 
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Figure 7 
A complete analysis of sentence (9). 
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Figure 8 
A graph of structures constructed against cycle number. 

boundaries of a sentence. The system currently adopts a greedy approach and starts 
posting large numbers of this type of codelet as soon as it has identified a plausible 
interpretation of the word boundaries of a sentence. Hence, although instances of agent 
and theme codelets were present in the coderack, they were being overwhelmed by 
the ubiquitous answer codelets. 

Figure 8 summarizes the cycle number in which various types of structures were 
constructed during this run. In this figure we see that affinity relations are built earlier 
than words, reflecting the system's preference for words of greater lengths. The system 
makes use of statistical information (the mutual information scores) to make quick and 
reliable guesses of the locations of these words. It can also be observed that overall, 
there is a gradual shift in the types of operations executed, from being character- 
centered initially, to word-centered, and then to chunk-centered. From time to time, 
however, the construction of different types of structures is interleaved. 

6. System Performance and Discussions 

Thirty ambiguous fragments that have alternating word boundaries in different sen- 
tential contexts were presented to the system and the system was able to resolve all 
the ambiguities. The test set covers the four types of word boundary ambiguities de- 
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scribed in Section 2. When the sentential contexts of locally ambiguous fragments (both 
the overlap and combination type) were varied, our system was able to identify the 
correct word boundaries. When the system was presented with sentences with global 
ambiguities, it produced all the plausible alternative word boundaries. However, at 
any run of such a sentence, only one alternative is generated. The system's behavior is 
similar to human performance in the goblet/faces recognition problem in perception 
(Hoffman and Richards 1984). We cannot see both the goblet and the faces at the same 
time, but we are able to switch back and forth between these two interpretations. 
The frequencies of generating all the alternatives vary from one sentence to another. 
It is important to note that such frequencies are not meant to indicate some kind of 
"goodness" measure of alternative word boundary interpretations. Neither are they 
meant to reflect the preferences of a human. They are merely a reflection of the usage 
frequencies of Chinese characters and words in our dictionary. 

The system's ability to generate different word boundaries for a globally ambigu- 
ous sentence arises from its stochastic search mechanism, which does not rule out 
a priori certain possibilities. This feature enables the system to occasionally discover 
less-obvious interpretations of word boundaries. For example, in addition to the two 
apparent ways of aligning the fragment ~ , ~  yTjrnggu6 as either ~ , ~  i~ yfjrnggu~ 
'already over' or B , ~  yfjrnggu6 'already go through' in sentences (10a) and (10b), 
a less-obvious possibility that the system has identified is: ~, ,~ i~ y~jTnggu~ 'already 
experience over', where i~ gu6 'over' is the complement of .~ jTng 'experience'. 

(10)a. 
w~ y~j~ng gu~ le xu~sh~ng shfd?li 
I already over ASP student period 
'My student days are over.' 

b. 
w~ yr jTnggu6 le xu~sh~ng shid?zi 
I already go through ASP student period 
'I have already gone through the period as a student.' 

C. 

w6 y~ j~ng gu?~ le xu~sheng shid?li 
I already experience over ASP student period 
'I have already experienced student life.' 

The system rarely produces the less-obvious interpretations. This demonstrates that 
its mechanisms are able to strike an effective balance between random search and 
deterministic search, imbuing it with both flexibility and robustness. 

An issue that arises from the nondeterministic feature of the system is: will the 
word boundaries of a locally ambiguous sentence vary at different runs? To address 
this, w e r a n  the program with each sentence 20 times. We found that for sentences cov- 
ered by our current set of linguistic descriptions, the system arrived at the same word 
boundaries despite different paths being taken at each run. For linguistic phenom- 
ena not yet covered, suboptimal solutions may sometimes be generated. For example, 
when the program worked on sentence (10), it produced sentence (11) once as the 
answer. 
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(11) 
zhonggu6 yz kdif~ h~ sh?mg w~i 
China already exploit and yet not 

kaifa de z~yu~n dOu h~n duo 
exploit STRUC resource all very many 
'China has many resources which have either been exploited 
or not yet been exploited.' 

(12)* 
zhdnggu6 yr kaifa hd sh?mg w~i 
China already exploit and yet not 

kai f~ de ziyu~n dOu h6n3 
open distribute STRUC resource all very 

duo 
many 

In this run, the bisyllabic word ~_~ /a//f~ 'develop' has been wrongly identified as 
two monosyllabic words ~'] /a/i 'open' and ~ ft/ 'distribute'. To determine the proper 
use of two juxtaposed predicates, such as ~J kai 'open' and ~ fa 'distribute' in this case, 
requires a careful study of serial verb constructions. It is inevitable that the system 
would make such a mistake as our linguistic descriptions have not yet covered this 
phenomenon. 

In comparison, consider the performance of a strictly statistical approach based 
on mutual information (Lua and Gan 1994): the latter wrongly identified the word 
boundaries in 11 out of the 30 ambiguous fragments. For the 6 fragments that appear 
in globally ambiguous sentences, the mutual information approach gave only one 
interpretation of the word boundaries. In terms of processing speed, the mutual infor- 
mation approach took an average of 110.4 ms to process one character; our approach 
took 1.7 s. 11 The extra time in our approach is spent in parsing sentences. 

7. Conclus ion 

In this paper, we reported on a stochastically emergent model for language processing 
and described its application to the modeling of context effects in ambiguous Chinese 
word boundary interpretation. The model simulates language processing as a collective 
phenomenon that emerges from a myriad of microscopic and diverse activities. The 
proposed mechanism, whereby word objects and chunk objects are formed by the 
hooking up of character objects as the latter are gradually cooled down, is analagous 
to the crystallization process in chemistry. 

Our application is distinct from existing work in two main respects: 

Word identification: We show that the full power of natural language 
processing can be brought to bear on the issue of word identification 
effectively and seamlessly. The model is able to resolve ambiguities 
appearing in different sentential contexts. This is an improvement over 
statistical approaches such as the relaxation method (Fan and Tsai 1988), 
which generates all possible ways of grouping the characters of a 
sentence into words, and then uses some scoring function to select the 

11 The mutual information approach was written in Borland C, version 2.0 while the new approach was 
written in Borland C++, version 3.0. Both ran on a 33 MHz, 386 machine. 
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best combination. At the same time, this model eliminates the use of ad 
hoc rules, as syntactic and semantic analysis are interleaved with word 
identification. This application is diametrically opposed to the 
reductionist approach of separating word segmentation and sentence 
analysis into two distinct stages. We have argued that our approach can 
avoid the computational problem of combinatorial explosion as the 
architecture has appropriate mechanisms to regulate run-time resources 
dynamically. 

Sentence analysis: We show that a sentence can be analyzed without 
assuming a presegmented input. The main feature is that there is no 
fixed, predetermined order of morphological, syntactic, and semantic 
analysis, since the control mechanism is a nondeterministic one. 
Essentially, the order in which these analyses are carried out is 
dependent on what has been discovered so far by the system, and the 
system's perception of what is relevant to the task it is currently 
investigating. 

The essential idea of the proposed model is that of stochastically guided conver- 
gence to what is called a globally optimum state. This model shares some features with 
APRIL (Annealing Parser for Realistic Input Language) (Sampson, Haigh, and Atwell 
1989). APRIL uses simulated annealing to determine the most plausible parse tree of 
a sentence. It begins with an arbitrary tree. Many local modifications are generated 
randomly. They are either adopted or rejected according to their effect on a plausibil- 
ity measure. Modifications that improve the plausibility measure are always accepted; 
while unfavorable modifications are rejected only if the loss of merit exceeds a certain 
threshold. The threshold value is generated randomly but its mean value decreases 
according to some predefined schedule. This differs from the behavior of the compu- 
tational temperature in our system, which does not have a monotonically decreasing 
property. Our system further differs from APRIL in the following aspects: (i) APRIL 
begins with an arbitrary parse tree whereas our system begins with no parse structure; 
(ii) APRIUs plausibility measure is defined using statistics collected from a treebank 
of manually parsed English text while ours is derived from mutual information statis- 
tics and linguistic constraints; (iii) parse trees in APRIL are immediate-constituency 
type while ours are dependency-based. That is, nodes in our system are either char- 
acters, words, or chunks. There are no nonterminal nodes defined with grammatical 
categories. 

Our model also shares some features with connectionist models, such as fine- 
grained parallelism, local actions, competition, spreading activation, and statistically 
emergent effects from a large number of small, subcognitive events. On the other 
hand, the representation of concepts is quite different: they are encoded as atomic, 
symbolic primitives instead of distributed as weighted connections between nodes in 
a network, which is common in connectionist systems. Therefore, in terms of the degree 
to which concepts are distributed, our representation has a strong symbolic flavor; in 
terms of the extent to which high-level behavior emerges from lower-level processes, 
ours has a strong subsymbolic orientation. By providing an account of the language 
understanding process at such an intermediate level of description, it is hoped that our 
results will provide a guide to connectionists studying how such intermediate-level 
structures can emerge from neurons or cell-assemblies in the brain. 
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8. Future Work 

Our application, which handles only thirty sentences at present, has enabled us to 
focus on the mechanisms that underlie the process of sentence comprehension, and 
their interactions. With the progress made in this study, which would not have been 
possible if we had plunged straight into large-scale unrestricted texts, our next concern 
would be to address the issue of scalability. There are two aspects to this issue. 

The effect of various parameter values chosen for the formulae shown in 
Section 5 on the operation of the program: These values are set by 
trial-and-error. They are not specifically tailored to our test set. To finesse 
these parameters in order to completely weed out unpromising search 
paths is impossible, since decision making in the system is stochastic. We 
therefore do not anticipate that the setting of the various parameter 
values is an issue during scaling up. The values of the parameters may 
affect the rate of convergence, but they will not affect the accuracy of the 
system in terms of the analysis results. 

The possibility of generating thousands of codelets as a result of using a 
large lexicon: We do not expect such a scenario to occur. Instead, having 
a large lexicon means that the system is able to handle more sentences. 
The number of codelets spawned to process a sentence is determined by 
the number of characters and words in the sentence, and the types of 
words and chunks in the sentence, not by the size of the lexicon. In 
addition, there are built-in mechanisms to manage the growth of 
codelets. We have demonstrated in Section 5 how we have made use of 
statistics (the maximum matching heuristics and mutual information) to 
avoid generating all possible word boundary combinations. The sample 
run in Section 5 has also demonstrated that the program need not finish 
executing all codelets in the coderack before it is allowed to stop, and 
that simpler and more clear-cut decisions tend to be made before the 
more subtle ones. Furthermore, certain features of the system, namely, 
the stochastic selection of a codelet by relative urgencies, the use of the 
conceptual network as a top-down controller, the interactions between 
the conceptual network and the workspace, enable the system to 
dynamically decide on the number and the types of codelets to be 
generated. 

The real bottleneck when scaling-up is the acquisition of linguistic descriptions, 
as our current work has limited breadth and depth of coverage. Therefore, the cur- 
rent system has less practical value to people working on the word segmentation 
problem, where the main concern is to develop algorithms that work for large-scale 
text. However, the proposed model provides a useful architecture for us to study the 
root of what people do when they encounter unknown words in text. This issue of 
unknown-word resolution has been the single major problem in the segmentation of 
unrestricted text. Understanding how higherqevel knowledge is brought to bear on 
this issue is essential to the design of an effective solution. Hence, our next goal is to 
apply the model to handle the unknown-word problem, including treatments of un- 
known compounds such as personal names, previously unseen place names, foreign 
names in transliteration, and company names. 
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