@inproceedings{sun-etal-2017-parsing,
title = "Parsing for Grammatical Relations via Graph Merging",
author = "Sun, Weiwei and
Du, Yantao and
Wan, Xiaojun",
editor = "Levy, Roger and
Specia, Lucia",
booktitle = "Proceedings of the 21st Conference on Computational Natural Language Learning ({C}o{NLL} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-1005/",
doi = "10.18653/v1/K17-1005",
pages = "26--35",
abstract = "This paper is concerned with building deep grammatical relation (GR) analysis using data-driven approach. To deal with this problem, we propose graph merging, a new perspective, for building flexible dependency graphs: Constructing complex graphs via constructing simple subgraphs. We discuss two key problems in this perspective: (1) how to decompose a complex graph into simple subgraphs, and (2) how to combine subgraphs into a coherent complex graph. Experiments demonstrate the effectiveness of graph merging. Our parser reaches state-of-the-art performance and is significantly better than two transition-based parsers."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2017-parsing">
<titleInfo>
<title>Parsing for Grammatical Relations via Graph Merging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weiwei</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yantao</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper is concerned with building deep grammatical relation (GR) analysis using data-driven approach. To deal with this problem, we propose graph merging, a new perspective, for building flexible dependency graphs: Constructing complex graphs via constructing simple subgraphs. We discuss two key problems in this perspective: (1) how to decompose a complex graph into simple subgraphs, and (2) how to combine subgraphs into a coherent complex graph. Experiments demonstrate the effectiveness of graph merging. Our parser reaches state-of-the-art performance and is significantly better than two transition-based parsers.</abstract>
<identifier type="citekey">sun-etal-2017-parsing</identifier>
<identifier type="doi">10.18653/v1/K17-1005</identifier>
<location>
<url>https://aclanthology.org/K17-1005/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>26</start>
<end>35</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Parsing for Grammatical Relations via Graph Merging
%A Sun, Weiwei
%A Du, Yantao
%A Wan, Xiaojun
%Y Levy, Roger
%Y Specia, Lucia
%S Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F sun-etal-2017-parsing
%X This paper is concerned with building deep grammatical relation (GR) analysis using data-driven approach. To deal with this problem, we propose graph merging, a new perspective, for building flexible dependency graphs: Constructing complex graphs via constructing simple subgraphs. We discuss two key problems in this perspective: (1) how to decompose a complex graph into simple subgraphs, and (2) how to combine subgraphs into a coherent complex graph. Experiments demonstrate the effectiveness of graph merging. Our parser reaches state-of-the-art performance and is significantly better than two transition-based parsers.
%R 10.18653/v1/K17-1005
%U https://aclanthology.org/K17-1005/
%U https://doi.org/10.18653/v1/K17-1005
%P 26-35
Markdown (Informal)
[Parsing for Grammatical Relations via Graph Merging](https://aclanthology.org/K17-1005/) (Sun et al., CoNLL 2017)
ACL
- Weiwei Sun, Yantao Du, and Xiaojun Wan. 2017. Parsing for Grammatical Relations via Graph Merging. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 26–35, Vancouver, Canada. Association for Computational Linguistics.