@inproceedings{bhatia-etal-2017-automatic,
title = "An Automatic Approach for Document-level Topic Model Evaluation",
author = "Bhatia, Shraey and
Lau, Jey Han and
Baldwin, Timothy",
editor = "Levy, Roger and
Specia, Lucia",
booktitle = "Proceedings of the 21st Conference on Computational Natural Language Learning ({C}o{NLL} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-1022",
doi = "10.18653/v1/K17-1022",
pages = "206--215",
abstract = "Topic models jointly learn topics and document-level topic distribution. Extrinsic evaluation of topic models tends to focus exclusively on topic-level evaluation, e.g. by assessing the coherence of topics. We demonstrate that there can be large discrepancies between topic- and document-level model quality, and that basing model evaluation on topic-level analysis can be highly misleading. We propose a method for automatically predicting topic model quality based on analysis of document-level topic allocations, and provide empirical evidence for its robustness.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bhatia-etal-2017-automatic">
<titleInfo>
<title>An Automatic Approach for Document-level Topic Model Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shraey</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jey</namePart>
<namePart type="given">Han</namePart>
<namePart type="family">Lau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topic models jointly learn topics and document-level topic distribution. Extrinsic evaluation of topic models tends to focus exclusively on topic-level evaluation, e.g. by assessing the coherence of topics. We demonstrate that there can be large discrepancies between topic- and document-level model quality, and that basing model evaluation on topic-level analysis can be highly misleading. We propose a method for automatically predicting topic model quality based on analysis of document-level topic allocations, and provide empirical evidence for its robustness.</abstract>
<identifier type="citekey">bhatia-etal-2017-automatic</identifier>
<identifier type="doi">10.18653/v1/K17-1022</identifier>
<location>
<url>https://aclanthology.org/K17-1022</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>206</start>
<end>215</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Automatic Approach for Document-level Topic Model Evaluation
%A Bhatia, Shraey
%A Lau, Jey Han
%A Baldwin, Timothy
%Y Levy, Roger
%Y Specia, Lucia
%S Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F bhatia-etal-2017-automatic
%X Topic models jointly learn topics and document-level topic distribution. Extrinsic evaluation of topic models tends to focus exclusively on topic-level evaluation, e.g. by assessing the coherence of topics. We demonstrate that there can be large discrepancies between topic- and document-level model quality, and that basing model evaluation on topic-level analysis can be highly misleading. We propose a method for automatically predicting topic model quality based on analysis of document-level topic allocations, and provide empirical evidence for its robustness.
%R 10.18653/v1/K17-1022
%U https://aclanthology.org/K17-1022
%U https://doi.org/10.18653/v1/K17-1022
%P 206-215
Markdown (Informal)
[An Automatic Approach for Document-level Topic Model Evaluation](https://aclanthology.org/K17-1022) (Bhatia et al., CoNLL 2017)
ACL