@inproceedings{renduchintala-etal-2017-knowledge,
title = "Knowledge Tracing in Sequential Learning of Inflected Vocabulary",
author = "Renduchintala, Adithya and
Koehn, Philipp and
Eisner, Jason",
editor = "Levy, Roger and
Specia, Lucia",
booktitle = "Proceedings of the 21st Conference on Computational Natural Language Learning ({C}o{NLL} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-1025/",
doi = "10.18653/v1/K17-1025",
pages = "238--247",
abstract = "We present a feature-rich knowledge tracing method that captures a student`s acquisition and retention of knowledge during a foreign language phrase learning task. We model the student`s behavior as making predictions under a log-linear model, and adopt a neural gating mechanism to model how the student updates their log-linear parameters in response to feedback. The gating mechanism allows the model to learn complex patterns of retention and acquisition for each feature, while the log-linear parameterization results in an interpretable knowledge state. We collect human data and evaluate several versions of the model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="renduchintala-etal-2017-knowledge">
<titleInfo>
<title>Knowledge Tracing in Sequential Learning of Inflected Vocabulary</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adithya</namePart>
<namePart type="family">Renduchintala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Eisner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a feature-rich knowledge tracing method that captures a student‘s acquisition and retention of knowledge during a foreign language phrase learning task. We model the student‘s behavior as making predictions under a log-linear model, and adopt a neural gating mechanism to model how the student updates their log-linear parameters in response to feedback. The gating mechanism allows the model to learn complex patterns of retention and acquisition for each feature, while the log-linear parameterization results in an interpretable knowledge state. We collect human data and evaluate several versions of the model.</abstract>
<identifier type="citekey">renduchintala-etal-2017-knowledge</identifier>
<identifier type="doi">10.18653/v1/K17-1025</identifier>
<location>
<url>https://aclanthology.org/K17-1025/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>238</start>
<end>247</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Knowledge Tracing in Sequential Learning of Inflected Vocabulary
%A Renduchintala, Adithya
%A Koehn, Philipp
%A Eisner, Jason
%Y Levy, Roger
%Y Specia, Lucia
%S Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F renduchintala-etal-2017-knowledge
%X We present a feature-rich knowledge tracing method that captures a student‘s acquisition and retention of knowledge during a foreign language phrase learning task. We model the student‘s behavior as making predictions under a log-linear model, and adopt a neural gating mechanism to model how the student updates their log-linear parameters in response to feedback. The gating mechanism allows the model to learn complex patterns of retention and acquisition for each feature, while the log-linear parameterization results in an interpretable knowledge state. We collect human data and evaluate several versions of the model.
%R 10.18653/v1/K17-1025
%U https://aclanthology.org/K17-1025/
%U https://doi.org/10.18653/v1/K17-1025
%P 238-247
Markdown (Informal)
[Knowledge Tracing in Sequential Learning of Inflected Vocabulary](https://aclanthology.org/K17-1025/) (Renduchintala et al., CoNLL 2017)
ACL