@inproceedings{saparov-etal-2017-probabilistic,
title = "A Probabilistic Generative Grammar for Semantic Parsing",
author = "Saparov, Abulhair and
Saraswat, Vijay and
Mitchell, Tom",
editor = "Levy, Roger and
Specia, Lucia",
booktitle = "Proceedings of the 21st Conference on Computational Natural Language Learning ({C}o{NLL} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-1026/",
doi = "10.18653/v1/K17-1026",
pages = "248--259",
abstract = "We present a generative model of natural language sentences and demonstrate its application to semantic parsing. In the generative process, a logical form sampled from a prior, and conditioned on this logical form, a grammar probabilistically generates the output sentence. Grammar induction using MCMC is applied to learn the grammar given a set of labeled sentences with corresponding logical forms. We develop a semantic parser that finds the logical form with the highest posterior probability exactly. We obtain strong results on the GeoQuery dataset and achieve state-of-the-art F1 on Jobs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saparov-etal-2017-probabilistic">
<titleInfo>
<title>A Probabilistic Generative Grammar for Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abulhair</namePart>
<namePart type="family">Saparov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vijay</namePart>
<namePart type="family">Saraswat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Mitchell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a generative model of natural language sentences and demonstrate its application to semantic parsing. In the generative process, a logical form sampled from a prior, and conditioned on this logical form, a grammar probabilistically generates the output sentence. Grammar induction using MCMC is applied to learn the grammar given a set of labeled sentences with corresponding logical forms. We develop a semantic parser that finds the logical form with the highest posterior probability exactly. We obtain strong results on the GeoQuery dataset and achieve state-of-the-art F1 on Jobs.</abstract>
<identifier type="citekey">saparov-etal-2017-probabilistic</identifier>
<identifier type="doi">10.18653/v1/K17-1026</identifier>
<location>
<url>https://aclanthology.org/K17-1026/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>248</start>
<end>259</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Probabilistic Generative Grammar for Semantic Parsing
%A Saparov, Abulhair
%A Saraswat, Vijay
%A Mitchell, Tom
%Y Levy, Roger
%Y Specia, Lucia
%S Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F saparov-etal-2017-probabilistic
%X We present a generative model of natural language sentences and demonstrate its application to semantic parsing. In the generative process, a logical form sampled from a prior, and conditioned on this logical form, a grammar probabilistically generates the output sentence. Grammar induction using MCMC is applied to learn the grammar given a set of labeled sentences with corresponding logical forms. We develop a semantic parser that finds the logical form with the highest posterior probability exactly. We obtain strong results on the GeoQuery dataset and achieve state-of-the-art F1 on Jobs.
%R 10.18653/v1/K17-1026
%U https://aclanthology.org/K17-1026/
%U https://doi.org/10.18653/v1/K17-1026
%P 248-259
Markdown (Informal)
[A Probabilistic Generative Grammar for Semantic Parsing](https://aclanthology.org/K17-1026/) (Saparov et al., CoNLL 2017)
ACL
- Abulhair Saparov, Vijay Saraswat, and Tom Mitchell. 2017. A Probabilistic Generative Grammar for Semantic Parsing. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 248–259, Vancouver, Canada. Association for Computational Linguistics.