@inproceedings{nicosia-moschitti-2017-learning,
title = "Learning Contextual Embeddings for Structural Semantic Similarity using Categorical Information",
author = "Nicosia, Massimo and
Moschitti, Alessandro",
editor = "Levy, Roger and
Specia, Lucia",
booktitle = "Proceedings of the 21st Conference on Computational Natural Language Learning ({C}o{NLL} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-1027",
doi = "10.18653/v1/K17-1027",
pages = "260--270",
abstract = "Tree kernels (TKs) and neural networks are two effective approaches for automatic feature engineering. In this paper, we combine them by modeling context word similarity in semantic TKs. This way, the latter can operate subtree matching by applying neural-based similarity on tree lexical nodes. We study how to learn representations for the words in context such that TKs can exploit more focused information. We found that neural embeddings produced by current methods do not provide a suitable contextual similarity. Thus, we define a new approach based on a Siamese Network, which produces word representations while learning a binary text similarity. We set the latter considering examples in the same category as similar. The experiments on question and sentiment classification show that our semantic TK highly improves previous results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nicosia-moschitti-2017-learning">
<titleInfo>
<title>Learning Contextual Embeddings for Structural Semantic Similarity using Categorical Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Nicosia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Moschitti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Tree kernels (TKs) and neural networks are two effective approaches for automatic feature engineering. In this paper, we combine them by modeling context word similarity in semantic TKs. This way, the latter can operate subtree matching by applying neural-based similarity on tree lexical nodes. We study how to learn representations for the words in context such that TKs can exploit more focused information. We found that neural embeddings produced by current methods do not provide a suitable contextual similarity. Thus, we define a new approach based on a Siamese Network, which produces word representations while learning a binary text similarity. We set the latter considering examples in the same category as similar. The experiments on question and sentiment classification show that our semantic TK highly improves previous results.</abstract>
<identifier type="citekey">nicosia-moschitti-2017-learning</identifier>
<identifier type="doi">10.18653/v1/K17-1027</identifier>
<location>
<url>https://aclanthology.org/K17-1027</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>260</start>
<end>270</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Contextual Embeddings for Structural Semantic Similarity using Categorical Information
%A Nicosia, Massimo
%A Moschitti, Alessandro
%Y Levy, Roger
%Y Specia, Lucia
%S Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F nicosia-moschitti-2017-learning
%X Tree kernels (TKs) and neural networks are two effective approaches for automatic feature engineering. In this paper, we combine them by modeling context word similarity in semantic TKs. This way, the latter can operate subtree matching by applying neural-based similarity on tree lexical nodes. We study how to learn representations for the words in context such that TKs can exploit more focused information. We found that neural embeddings produced by current methods do not provide a suitable contextual similarity. Thus, we define a new approach based on a Siamese Network, which produces word representations while learning a binary text similarity. We set the latter considering examples in the same category as similar. The experiments on question and sentiment classification show that our semantic TK highly improves previous results.
%R 10.18653/v1/K17-1027
%U https://aclanthology.org/K17-1027
%U https://doi.org/10.18653/v1/K17-1027
%P 260-270
Markdown (Informal)
[Learning Contextual Embeddings for Structural Semantic Similarity using Categorical Information](https://aclanthology.org/K17-1027) (Nicosia & Moschitti, CoNLL 2017)
ACL