@inproceedings{bjorkelund-etal-2017-ims,
title = "{IMS} at the {C}o{NLL} 2017 {UD} Shared Task: {CRF}s and Perceptrons Meet Neural Networks",
author = {Bj{\"o}rkelund, Anders and
Falenska, Agnieszka and
Yu, Xiang and
Kuhn, Jonas},
editor = "Haji{\v{c}}, Jan and
Zeman, Dan",
booktitle = "Proceedings of the {C}o{NLL} 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-3004",
doi = "10.18653/v1/K17-3004",
pages = "40--51",
abstract = "This paper presents the IMS contribution to the CoNLL 2017 Shared Task. In the preprocessing step we employed a CRF POS/morphological tagger and a neural tagger predicting supertags. On some languages, we also applied word segmentation with the CRF tagger and sentence segmentation with a perceptron-based parser. For parsing we took an ensemble approach by blending multiple instances of three parsers with very different architectures. Our system achieved the third place overall and the second place for the surprise languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bjorkelund-etal-2017-ims">
<titleInfo>
<title>IMS at the CoNLL 2017 UD Shared Task: CRFs and Perceptrons Meet Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Björkelund</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agnieszka</namePart>
<namePart type="family">Falenska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonas</namePart>
<namePart type="family">Kuhn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the IMS contribution to the CoNLL 2017 Shared Task. In the preprocessing step we employed a CRF POS/morphological tagger and a neural tagger predicting supertags. On some languages, we also applied word segmentation with the CRF tagger and sentence segmentation with a perceptron-based parser. For parsing we took an ensemble approach by blending multiple instances of three parsers with very different architectures. Our system achieved the third place overall and the second place for the surprise languages.</abstract>
<identifier type="citekey">bjorkelund-etal-2017-ims</identifier>
<identifier type="doi">10.18653/v1/K17-3004</identifier>
<location>
<url>https://aclanthology.org/K17-3004</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>40</start>
<end>51</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IMS at the CoNLL 2017 UD Shared Task: CRFs and Perceptrons Meet Neural Networks
%A Björkelund, Anders
%A Falenska, Agnieszka
%A Yu, Xiang
%A Kuhn, Jonas
%Y Hajič, Jan
%Y Zeman, Dan
%S Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F bjorkelund-etal-2017-ims
%X This paper presents the IMS contribution to the CoNLL 2017 Shared Task. In the preprocessing step we employed a CRF POS/morphological tagger and a neural tagger predicting supertags. On some languages, we also applied word segmentation with the CRF tagger and sentence segmentation with a perceptron-based parser. For parsing we took an ensemble approach by blending multiple instances of three parsers with very different architectures. Our system achieved the third place overall and the second place for the surprise languages.
%R 10.18653/v1/K17-3004
%U https://aclanthology.org/K17-3004
%U https://doi.org/10.18653/v1/K17-3004
%P 40-51
Markdown (Informal)
[IMS at the CoNLL 2017 UD Shared Task: CRFs and Perceptrons Meet Neural Networks](https://aclanthology.org/K17-3004) (Björkelund et al., CoNLL 2017)
ACL