@inproceedings{kanerva-etal-2017-turkunlp,
title = "{T}urku{NLP}: Delexicalized Pre-training of Word Embeddings for Dependency Parsing",
author = "Kanerva, Jenna and
Luotolahti, Juhani and
Ginter, Filip",
editor = "Haji{\v{c}}, Jan and
Zeman, Dan",
booktitle = "Proceedings of the {C}o{NLL} 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-3012/",
doi = "10.18653/v1/K17-3012",
pages = "119--125",
abstract = "We present the TurkuNLP entry in the CoNLL 2017 Shared Task on Multilingual Parsing from Raw Text to Universal Dependencies. The system is based on the UDPipe parser with our focus being in exploring various techniques to pre-train the word embeddings used by the parser in order to improve its performance especially on languages with small training sets. The system ranked 11th among the 33 participants overall, being 8th on the small treebanks, 10th on the large treebanks, 12th on the parallel test sets, and 26th on the surprise languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kanerva-etal-2017-turkunlp">
<titleInfo>
<title>TurkuNLP: Delexicalized Pre-training of Word Embeddings for Dependency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jenna</namePart>
<namePart type="family">Kanerva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juhani</namePart>
<namePart type="family">Luotolahti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Ginter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the TurkuNLP entry in the CoNLL 2017 Shared Task on Multilingual Parsing from Raw Text to Universal Dependencies. The system is based on the UDPipe parser with our focus being in exploring various techniques to pre-train the word embeddings used by the parser in order to improve its performance especially on languages with small training sets. The system ranked 11th among the 33 participants overall, being 8th on the small treebanks, 10th on the large treebanks, 12th on the parallel test sets, and 26th on the surprise languages.</abstract>
<identifier type="citekey">kanerva-etal-2017-turkunlp</identifier>
<identifier type="doi">10.18653/v1/K17-3012</identifier>
<location>
<url>https://aclanthology.org/K17-3012/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>119</start>
<end>125</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TurkuNLP: Delexicalized Pre-training of Word Embeddings for Dependency Parsing
%A Kanerva, Jenna
%A Luotolahti, Juhani
%A Ginter, Filip
%Y Hajič, Jan
%Y Zeman, Dan
%S Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F kanerva-etal-2017-turkunlp
%X We present the TurkuNLP entry in the CoNLL 2017 Shared Task on Multilingual Parsing from Raw Text to Universal Dependencies. The system is based on the UDPipe parser with our focus being in exploring various techniques to pre-train the word embeddings used by the parser in order to improve its performance especially on languages with small training sets. The system ranked 11th among the 33 participants overall, being 8th on the small treebanks, 10th on the large treebanks, 12th on the parallel test sets, and 26th on the surprise languages.
%R 10.18653/v1/K17-3012
%U https://aclanthology.org/K17-3012/
%U https://doi.org/10.18653/v1/K17-3012
%P 119-125
Markdown (Informal)
[TurkuNLP: Delexicalized Pre-training of Word Embeddings for Dependency Parsing](https://aclanthology.org/K17-3012/) (Kanerva et al., CoNLL 2017)
ACL