@inproceedings{yu-etal-2017-parse,
title = "The parse is darc and full of errors: Universal dependency parsing with transition-based and graph-based algorithms",
author = "Yu, Kuan and
Sofroniev, Pavel and
Schill, Erik and
Hinrichs, Erhard",
editor = "Haji{\v{c}}, Jan and
Zeman, Dan",
booktitle = "Proceedings of the {C}o{NLL} 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-3013",
doi = "10.18653/v1/K17-3013",
pages = "126--133",
abstract = "We developed two simple systems for dependency parsing: darc, a transition-based parser, and mstnn, a graph-based parser. We tested our systems in the CoNLL 2017 UD Shared Task, with darc being the official system. Darc ranked 12th among 33 systems, just above the baseline. Mstnn had no official ranking, but its main score was above the 27th. In this paper, we describe our two systems, examine their strengths and weaknesses, and discuss the lessons we learned.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2017-parse">
<titleInfo>
<title>The parse is darc and full of errors: Universal dependency parsing with transition-based and graph-based algorithms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kuan</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Sofroniev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Schill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erhard</namePart>
<namePart type="family">Hinrichs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We developed two simple systems for dependency parsing: darc, a transition-based parser, and mstnn, a graph-based parser. We tested our systems in the CoNLL 2017 UD Shared Task, with darc being the official system. Darc ranked 12th among 33 systems, just above the baseline. Mstnn had no official ranking, but its main score was above the 27th. In this paper, we describe our two systems, examine their strengths and weaknesses, and discuss the lessons we learned.</abstract>
<identifier type="citekey">yu-etal-2017-parse</identifier>
<identifier type="doi">10.18653/v1/K17-3013</identifier>
<location>
<url>https://aclanthology.org/K17-3013</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>126</start>
<end>133</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The parse is darc and full of errors: Universal dependency parsing with transition-based and graph-based algorithms
%A Yu, Kuan
%A Sofroniev, Pavel
%A Schill, Erik
%A Hinrichs, Erhard
%Y Hajič, Jan
%Y Zeman, Dan
%S Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F yu-etal-2017-parse
%X We developed two simple systems for dependency parsing: darc, a transition-based parser, and mstnn, a graph-based parser. We tested our systems in the CoNLL 2017 UD Shared Task, with darc being the official system. Darc ranked 12th among 33 systems, just above the baseline. Mstnn had no official ranking, but its main score was above the 27th. In this paper, we describe our two systems, examine their strengths and weaknesses, and discuss the lessons we learned.
%R 10.18653/v1/K17-3013
%U https://aclanthology.org/K17-3013
%U https://doi.org/10.18653/v1/K17-3013
%P 126-133
Markdown (Informal)
[The parse is darc and full of errors: Universal dependency parsing with transition-based and graph-based algorithms](https://aclanthology.org/K17-3013) (Yu et al., CoNLL 2017)
ACL