@inproceedings{akkus-etal-2017-initial,
title = "Initial Explorations of {CCG} Supertagging for {U}niversal {D}ependency Parsing",
author = "Akkus, Burak Kerim and
Azizoglu, Heval and
Cakici, Ruket",
editor = "Haji{\v{c}}, Jan and
Zeman, Dan",
booktitle = "Proceedings of the {C}o{NLL} 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-3023/",
doi = "10.18653/v1/K17-3023",
pages = "218--227",
abstract = "In this paper we describe the system by METU team for universal dependency parsing of multilingual text. We use a neural network-based dependency parser that has a greedy transition approach to dependency parsing. CCG supertags contain rich structural information that proves useful in certain NLP tasks. We experiment with CCG supertags as additional features in our experiments. The neural network parser is trained together with dependencies and simplified CCG tags as well as other features provided."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akkus-etal-2017-initial">
<titleInfo>
<title>Initial Explorations of CCG Supertagging for Universal Dependency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Burak</namePart>
<namePart type="given">Kerim</namePart>
<namePart type="family">Akkus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heval</namePart>
<namePart type="family">Azizoglu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruket</namePart>
<namePart type="family">Cakici</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we describe the system by METU team for universal dependency parsing of multilingual text. We use a neural network-based dependency parser that has a greedy transition approach to dependency parsing. CCG supertags contain rich structural information that proves useful in certain NLP tasks. We experiment with CCG supertags as additional features in our experiments. The neural network parser is trained together with dependencies and simplified CCG tags as well as other features provided.</abstract>
<identifier type="citekey">akkus-etal-2017-initial</identifier>
<identifier type="doi">10.18653/v1/K17-3023</identifier>
<location>
<url>https://aclanthology.org/K17-3023/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>218</start>
<end>227</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Initial Explorations of CCG Supertagging for Universal Dependency Parsing
%A Akkus, Burak Kerim
%A Azizoglu, Heval
%A Cakici, Ruket
%Y Hajič, Jan
%Y Zeman, Dan
%S Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F akkus-etal-2017-initial
%X In this paper we describe the system by METU team for universal dependency parsing of multilingual text. We use a neural network-based dependency parser that has a greedy transition approach to dependency parsing. CCG supertags contain rich structural information that proves useful in certain NLP tasks. We experiment with CCG supertags as additional features in our experiments. The neural network parser is trained together with dependencies and simplified CCG tags as well as other features provided.
%R 10.18653/v1/K17-3023
%U https://aclanthology.org/K17-3023/
%U https://doi.org/10.18653/v1/K17-3023
%P 218-227
Markdown (Informal)
[Initial Explorations of CCG Supertagging for Universal Dependency Parsing](https://aclanthology.org/K17-3023/) (Akkus et al., CoNLL 2017)
ACL