@inproceedings{moor-etal-2017-clcl,
title = "{CLCL} (Geneva) {DINN} Parser: a Neural Network Dependency Parser Ten Years Later",
author = "Moor, Christophe and
Merlo, Paola and
Henderson, James and
Wang, Haozhou",
editor = "Haji{\v{c}}, Jan and
Zeman, Dan",
booktitle = "Proceedings of the {C}o{NLL} 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-3024/",
doi = "10.18653/v1/K17-3024",
pages = "228--236",
abstract = "This paper describes the University of Geneva`s submission to the CoNLL 2017 shared task Multilingual Parsing from Raw Text to Universal Dependencies (listed as the CLCL (Geneva) entry). Our submitted parsing system is the grandchild of the first transition-based neural network dependency parser, which was the University of Geneva`s entry in the CoNLL 2007 multilingual dependency parsing shared task, with some improvements to speed and portability. These results provide a baseline for investigating how far we have come in the past ten years of work on neural network dependency parsing."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moor-etal-2017-clcl">
<titleInfo>
<title>CLCL (Geneva) DINN Parser: a Neural Network Dependency Parser Ten Years Later</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christophe</namePart>
<namePart type="family">Moor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Henderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haozhou</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the University of Geneva‘s submission to the CoNLL 2017 shared task Multilingual Parsing from Raw Text to Universal Dependencies (listed as the CLCL (Geneva) entry). Our submitted parsing system is the grandchild of the first transition-based neural network dependency parser, which was the University of Geneva‘s entry in the CoNLL 2007 multilingual dependency parsing shared task, with some improvements to speed and portability. These results provide a baseline for investigating how far we have come in the past ten years of work on neural network dependency parsing.</abstract>
<identifier type="citekey">moor-etal-2017-clcl</identifier>
<identifier type="doi">10.18653/v1/K17-3024</identifier>
<location>
<url>https://aclanthology.org/K17-3024/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>228</start>
<end>236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CLCL (Geneva) DINN Parser: a Neural Network Dependency Parser Ten Years Later
%A Moor, Christophe
%A Merlo, Paola
%A Henderson, James
%A Wang, Haozhou
%Y Hajič, Jan
%Y Zeman, Dan
%S Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F moor-etal-2017-clcl
%X This paper describes the University of Geneva‘s submission to the CoNLL 2017 shared task Multilingual Parsing from Raw Text to Universal Dependencies (listed as the CLCL (Geneva) entry). Our submitted parsing system is the grandchild of the first transition-based neural network dependency parser, which was the University of Geneva‘s entry in the CoNLL 2007 multilingual dependency parsing shared task, with some improvements to speed and portability. These results provide a baseline for investigating how far we have come in the past ten years of work on neural network dependency parsing.
%R 10.18653/v1/K17-3024
%U https://aclanthology.org/K17-3024/
%U https://doi.org/10.18653/v1/K17-3024
%P 228-236
Markdown (Informal)
[CLCL (Geneva) DINN Parser: a Neural Network Dependency Parser Ten Years Later](https://aclanthology.org/K17-3024/) (Moor et al., CoNLL 2017)
ACL