@inproceedings{ji-etal-2017-fast,
title = "A Fast and Lightweight System for Multilingual Dependency Parsing",
author = "Ji, Tao and
Wu, Yuanbin and
Lan, Man",
editor = "Haji{\v{c}}, Jan and
Zeman, Dan",
booktitle = "Proceedings of the {C}o{NLL} 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-3025/",
doi = "10.18653/v1/K17-3025",
pages = "237--242",
abstract = "We present a multilingual dependency parser with a bidirectional-LSTM (BiLSTM) feature extractor and a multi-layer perceptron (MLP) classifier. We trained our transition-based projective parser in UD version 2.0 datasets without any additional data. The parser is fast, lightweight and effective on big treebanks. In the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, the official results show that the macro-averaged LAS F1 score of our system Mengest is 61.33{\%}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ji-etal-2017-fast">
<titleInfo>
<title>A Fast and Lightweight System for Multilingual Dependency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanbin</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Man</namePart>
<namePart type="family">Lan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a multilingual dependency parser with a bidirectional-LSTM (BiLSTM) feature extractor and a multi-layer perceptron (MLP) classifier. We trained our transition-based projective parser in UD version 2.0 datasets without any additional data. The parser is fast, lightweight and effective on big treebanks. In the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, the official results show that the macro-averaged LAS F1 score of our system Mengest is 61.33%.</abstract>
<identifier type="citekey">ji-etal-2017-fast</identifier>
<identifier type="doi">10.18653/v1/K17-3025</identifier>
<location>
<url>https://aclanthology.org/K17-3025/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>237</start>
<end>242</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Fast and Lightweight System for Multilingual Dependency Parsing
%A Ji, Tao
%A Wu, Yuanbin
%A Lan, Man
%Y Hajič, Jan
%Y Zeman, Dan
%S Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F ji-etal-2017-fast
%X We present a multilingual dependency parser with a bidirectional-LSTM (BiLSTM) feature extractor and a multi-layer perceptron (MLP) classifier. We trained our transition-based projective parser in UD version 2.0 datasets without any additional data. The parser is fast, lightweight and effective on big treebanks. In the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, the official results show that the macro-averaged LAS F1 score of our system Mengest is 61.33%.
%R 10.18653/v1/K17-3025
%U https://aclanthology.org/K17-3025/
%U https://doi.org/10.18653/v1/K17-3025
%P 237-242
Markdown (Informal)
[A Fast and Lightweight System for Multilingual Dependency Parsing](https://aclanthology.org/K17-3025/) (Ji et al., CoNLL 2017)
ACL