@inproceedings{ji-etal-2017-fast,
    title = "A Fast and Lightweight System for Multilingual Dependency Parsing",
    author = "Ji, Tao  and
      Wu, Yuanbin  and
      Lan, Man",
    editor = "Haji{\v{c}}, Jan  and
      Zeman, Dan",
    booktitle = "Proceedings of the {C}o{NLL} 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/K17-3025/",
    doi = "10.18653/v1/K17-3025",
    pages = "237--242",
    abstract = "We present a multilingual dependency parser with a bidirectional-LSTM (BiLSTM) feature extractor and a multi-layer perceptron (MLP) classifier. We trained our transition-based projective parser in UD version 2.0 datasets without any additional data. The parser is fast, lightweight and effective on big treebanks. In the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, the official results show that the macro-averaged LAS F1 score of our system Mengest is 61.33{\%}."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ji-etal-2017-fast">
    <titleInfo>
        <title>A Fast and Lightweight System for Multilingual Dependency Parsing</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Tao</namePart>
        <namePart type="family">Ji</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yuanbin</namePart>
        <namePart type="family">Wu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Man</namePart>
        <namePart type="family">Lan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jan</namePart>
            <namePart type="family">Hajič</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Dan</namePart>
            <namePart type="family">Zeman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present a multilingual dependency parser with a bidirectional-LSTM (BiLSTM) feature extractor and a multi-layer perceptron (MLP) classifier. We trained our transition-based projective parser in UD version 2.0 datasets without any additional data. The parser is fast, lightweight and effective on big treebanks. In the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, the official results show that the macro-averaged LAS F1 score of our system Mengest is 61.33%.</abstract>
    <identifier type="citekey">ji-etal-2017-fast</identifier>
    <identifier type="doi">10.18653/v1/K17-3025</identifier>
    <location>
        <url>https://aclanthology.org/K17-3025/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>237</start>
            <end>242</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Fast and Lightweight System for Multilingual Dependency Parsing
%A Ji, Tao
%A Wu, Yuanbin
%A Lan, Man
%Y Hajič, Jan
%Y Zeman, Dan
%S Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F ji-etal-2017-fast
%X We present a multilingual dependency parser with a bidirectional-LSTM (BiLSTM) feature extractor and a multi-layer perceptron (MLP) classifier. We trained our transition-based projective parser in UD version 2.0 datasets without any additional data. The parser is fast, lightweight and effective on big treebanks. In the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, the official results show that the macro-averaged LAS F1 score of our system Mengest is 61.33%.
%R 10.18653/v1/K17-3025
%U https://aclanthology.org/K17-3025/
%U https://doi.org/10.18653/v1/K17-3025
%P 237-242
Markdown (Informal)
[A Fast and Lightweight System for Multilingual Dependency Parsing](https://aclanthology.org/K17-3025/) (Ji et al., CoNLL 2017)
ACL