@inproceedings{kanayama-etal-2017-semi,
title = "A Semi-universal Pipelined Approach to the {C}o{NLL} 2017 {UD} Shared Task",
author = "Kanayama, Hiroshi and
Muraoka, Masayasu and
Yoshikawa, Katsumasa",
editor = "Haji{\v{c}}, Jan and
Zeman, Dan",
booktitle = "Proceedings of the {C}o{NLL} 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K17-3028",
doi = "10.18653/v1/K17-3028",
pages = "265--273",
abstract = "This paper presents our system submitted for the CoNLL 2017 Shared Task, {``}Multilingual Parsing from Raw Text to Universal Dependencies.{''} We ran the system for all languages with our own fully pipelined components without relying on re-trained baseline systems. To train the dependency parser, we used only the universal part-of-speech tags and distance between words, and applied deterministic rules to assign dependency labels. The simple and delexicalized models are suitable for cross-lingual transfer approaches and a universal language model. Experimental results show that our model performed well in some metrics and leads discussion on topics such as contribution of each component and on syntactic similarities among languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kanayama-etal-2017-semi">
<titleInfo>
<title>A Semi-universal Pipelined Approach to the CoNLL 2017 UD Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hiroshi</namePart>
<namePart type="family">Kanayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masayasu</namePart>
<namePart type="family">Muraoka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katsumasa</namePart>
<namePart type="family">Yoshikawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our system submitted for the CoNLL 2017 Shared Task, “Multilingual Parsing from Raw Text to Universal Dependencies.” We ran the system for all languages with our own fully pipelined components without relying on re-trained baseline systems. To train the dependency parser, we used only the universal part-of-speech tags and distance between words, and applied deterministic rules to assign dependency labels. The simple and delexicalized models are suitable for cross-lingual transfer approaches and a universal language model. Experimental results show that our model performed well in some metrics and leads discussion on topics such as contribution of each component and on syntactic similarities among languages.</abstract>
<identifier type="citekey">kanayama-etal-2017-semi</identifier>
<identifier type="doi">10.18653/v1/K17-3028</identifier>
<location>
<url>https://aclanthology.org/K17-3028</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>265</start>
<end>273</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Semi-universal Pipelined Approach to the CoNLL 2017 UD Shared Task
%A Kanayama, Hiroshi
%A Muraoka, Masayasu
%A Yoshikawa, Katsumasa
%Y Hajič, Jan
%Y Zeman, Dan
%S Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F kanayama-etal-2017-semi
%X This paper presents our system submitted for the CoNLL 2017 Shared Task, “Multilingual Parsing from Raw Text to Universal Dependencies.” We ran the system for all languages with our own fully pipelined components without relying on re-trained baseline systems. To train the dependency parser, we used only the universal part-of-speech tags and distance between words, and applied deterministic rules to assign dependency labels. The simple and delexicalized models are suitable for cross-lingual transfer approaches and a universal language model. Experimental results show that our model performed well in some metrics and leads discussion on topics such as contribution of each component and on syntactic similarities among languages.
%R 10.18653/v1/K17-3028
%U https://aclanthology.org/K17-3028
%U https://doi.org/10.18653/v1/K17-3028
%P 265-273
Markdown (Informal)
[A Semi-universal Pipelined Approach to the CoNLL 2017 UD Shared Task](https://aclanthology.org/K17-3028) (Kanayama et al., CoNLL 2017)
ACL