@inproceedings{kementchedjhieva-etal-2018-generalizing,
title = "Generalizing {P}rocrustes Analysis for Better Bilingual Dictionary Induction",
author = "Kementchedjhieva, Yova and
Ruder, Sebastian and
Cotterell, Ryan and
S{\o}gaard, Anders",
editor = "Korhonen, Anna and
Titov, Ivan",
booktitle = "Proceedings of the 22nd Conference on Computational Natural Language Learning",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K18-1021",
doi = "10.18653/v1/K18-1021",
pages = "211--220",
abstract = "Most recent approaches to bilingual dictionary induction find a linear alignment between the word vector spaces of two languages. We show that projecting the two languages onto a third, latent space, rather than directly onto each other, while equivalent in terms of expressivity, makes it easier to learn approximate alignments. Our modified approach also allows for supporting languages to be included in the alignment process, to obtain an even better performance in low resource settings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kementchedjhieva-etal-2018-generalizing">
<titleInfo>
<title>Generalizing Procrustes Analysis for Better Bilingual Dictionary Induction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yova</namePart>
<namePart type="family">Kementchedjhieva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Ruder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Titov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most recent approaches to bilingual dictionary induction find a linear alignment between the word vector spaces of two languages. We show that projecting the two languages onto a third, latent space, rather than directly onto each other, while equivalent in terms of expressivity, makes it easier to learn approximate alignments. Our modified approach also allows for supporting languages to be included in the alignment process, to obtain an even better performance in low resource settings.</abstract>
<identifier type="citekey">kementchedjhieva-etal-2018-generalizing</identifier>
<identifier type="doi">10.18653/v1/K18-1021</identifier>
<location>
<url>https://aclanthology.org/K18-1021</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>211</start>
<end>220</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generalizing Procrustes Analysis for Better Bilingual Dictionary Induction
%A Kementchedjhieva, Yova
%A Ruder, Sebastian
%A Cotterell, Ryan
%A Søgaard, Anders
%Y Korhonen, Anna
%Y Titov, Ivan
%S Proceedings of the 22nd Conference on Computational Natural Language Learning
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F kementchedjhieva-etal-2018-generalizing
%X Most recent approaches to bilingual dictionary induction find a linear alignment between the word vector spaces of two languages. We show that projecting the two languages onto a third, latent space, rather than directly onto each other, while equivalent in terms of expressivity, makes it easier to learn approximate alignments. Our modified approach also allows for supporting languages to be included in the alignment process, to obtain an even better performance in low resource settings.
%R 10.18653/v1/K18-1021
%U https://aclanthology.org/K18-1021
%U https://doi.org/10.18653/v1/K18-1021
%P 211-220
Markdown (Informal)
[Generalizing Procrustes Analysis for Better Bilingual Dictionary Induction](https://aclanthology.org/K18-1021) (Kementchedjhieva et al., CoNLL 2018)
ACL