@inproceedings{barrett-etal-2018-sequence,
title = "Sequence Classification with Human Attention",
author = "Barrett, Maria and
Bingel, Joachim and
Hollenstein, Nora and
Rei, Marek and
S{\o}gaard, Anders",
editor = "Korhonen, Anna and
Titov, Ivan",
booktitle = "Proceedings of the 22nd Conference on Computational Natural Language Learning",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K18-1030/",
doi = "10.18653/v1/K18-1030",
pages = "302--312",
abstract = "Learning attention functions requires large volumes of data, but many NLP tasks simulate human behavior, and in this paper, we show that human attention really does provide a good inductive bias on many attention functions in NLP. Specifically, we use estimated human attention derived from eye-tracking corpora to regularize attention functions in recurrent neural networks. We show substantial improvements across a range of tasks, including sentiment analysis, grammatical error detection, and detection of abusive language."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barrett-etal-2018-sequence">
<titleInfo>
<title>Sequence Classification with Human Attention</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joachim</namePart>
<namePart type="family">Bingel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Hollenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Rei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Titov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Learning attention functions requires large volumes of data, but many NLP tasks simulate human behavior, and in this paper, we show that human attention really does provide a good inductive bias on many attention functions in NLP. Specifically, we use estimated human attention derived from eye-tracking corpora to regularize attention functions in recurrent neural networks. We show substantial improvements across a range of tasks, including sentiment analysis, grammatical error detection, and detection of abusive language.</abstract>
<identifier type="citekey">barrett-etal-2018-sequence</identifier>
<identifier type="doi">10.18653/v1/K18-1030</identifier>
<location>
<url>https://aclanthology.org/K18-1030/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>302</start>
<end>312</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sequence Classification with Human Attention
%A Barrett, Maria
%A Bingel, Joachim
%A Hollenstein, Nora
%A Rei, Marek
%A Søgaard, Anders
%Y Korhonen, Anna
%Y Titov, Ivan
%S Proceedings of the 22nd Conference on Computational Natural Language Learning
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F barrett-etal-2018-sequence
%X Learning attention functions requires large volumes of data, but many NLP tasks simulate human behavior, and in this paper, we show that human attention really does provide a good inductive bias on many attention functions in NLP. Specifically, we use estimated human attention derived from eye-tracking corpora to regularize attention functions in recurrent neural networks. We show substantial improvements across a range of tasks, including sentiment analysis, grammatical error detection, and detection of abusive language.
%R 10.18653/v1/K18-1030
%U https://aclanthology.org/K18-1030/
%U https://doi.org/10.18653/v1/K18-1030
%P 302-312
Markdown (Informal)
[Sequence Classification with Human Attention](https://aclanthology.org/K18-1030/) (Barrett et al., CoNLL 2018)
ACL
- Maria Barrett, Joachim Bingel, Nora Hollenstein, Marek Rei, and Anders Søgaard. 2018. Sequence Classification with Human Attention. In Proceedings of the 22nd Conference on Computational Natural Language Learning, pages 302–312, Brussels, Belgium. Association for Computational Linguistics.