@inproceedings{kann-etal-2018-sentence,
title = "Sentence-Level Fluency Evaluation: References Help, But Can Be Spared!",
author = "Kann, Katharina and
Rothe, Sascha and
Filippova, Katja",
editor = "Korhonen, Anna and
Titov, Ivan",
booktitle = "Proceedings of the 22nd Conference on Computational Natural Language Learning",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K18-1031/",
doi = "10.18653/v1/K18-1031",
pages = "313--323",
abstract = "Motivated by recent findings on the probabilistic modeling of acceptability judgments, we propose syntactic log-odds ratio (SLOR), a normalized language model score, as a metric for referenceless fluency evaluation of natural language generation output at the sentence level. We further introduce WPSLOR, a novel WordPiece-based version, which harnesses a more compact language model. Even though word-overlap metrics like ROUGE are computed with the help of hand-written references, our referenceless methods obtain a significantly higher correlation with human fluency scores on a benchmark dataset of compressed sentences. Finally, we present ROUGE-LM, a reference-based metric which is a natural extension of WPSLOR to the case of available references. We show that ROUGE-LM yields a significantly higher correlation with human judgments than all baseline metrics, including WPSLOR on its own."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kann-etal-2018-sentence">
<titleInfo>
<title>Sentence-Level Fluency Evaluation: References Help, But Can Be Spared!</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katharina</namePart>
<namePart type="family">Kann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sascha</namePart>
<namePart type="family">Rothe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katja</namePart>
<namePart type="family">Filippova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Conference on Computational Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Titov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Motivated by recent findings on the probabilistic modeling of acceptability judgments, we propose syntactic log-odds ratio (SLOR), a normalized language model score, as a metric for referenceless fluency evaluation of natural language generation output at the sentence level. We further introduce WPSLOR, a novel WordPiece-based version, which harnesses a more compact language model. Even though word-overlap metrics like ROUGE are computed with the help of hand-written references, our referenceless methods obtain a significantly higher correlation with human fluency scores on a benchmark dataset of compressed sentences. Finally, we present ROUGE-LM, a reference-based metric which is a natural extension of WPSLOR to the case of available references. We show that ROUGE-LM yields a significantly higher correlation with human judgments than all baseline metrics, including WPSLOR on its own.</abstract>
<identifier type="citekey">kann-etal-2018-sentence</identifier>
<identifier type="doi">10.18653/v1/K18-1031</identifier>
<location>
<url>https://aclanthology.org/K18-1031/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>313</start>
<end>323</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentence-Level Fluency Evaluation: References Help, But Can Be Spared!
%A Kann, Katharina
%A Rothe, Sascha
%A Filippova, Katja
%Y Korhonen, Anna
%Y Titov, Ivan
%S Proceedings of the 22nd Conference on Computational Natural Language Learning
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F kann-etal-2018-sentence
%X Motivated by recent findings on the probabilistic modeling of acceptability judgments, we propose syntactic log-odds ratio (SLOR), a normalized language model score, as a metric for referenceless fluency evaluation of natural language generation output at the sentence level. We further introduce WPSLOR, a novel WordPiece-based version, which harnesses a more compact language model. Even though word-overlap metrics like ROUGE are computed with the help of hand-written references, our referenceless methods obtain a significantly higher correlation with human fluency scores on a benchmark dataset of compressed sentences. Finally, we present ROUGE-LM, a reference-based metric which is a natural extension of WPSLOR to the case of available references. We show that ROUGE-LM yields a significantly higher correlation with human judgments than all baseline metrics, including WPSLOR on its own.
%R 10.18653/v1/K18-1031
%U https://aclanthology.org/K18-1031/
%U https://doi.org/10.18653/v1/K18-1031
%P 313-323
Markdown (Informal)
[Sentence-Level Fluency Evaluation: References Help, But Can Be Spared!](https://aclanthology.org/K18-1031/) (Kann et al., CoNLL 2018)
ACL