@inproceedings{che-etal-2018-towards,
title = "Towards Better {UD} Parsing: Deep Contextualized Word Embeddings, Ensemble, and Treebank Concatenation",
author = "Che, Wanxiang and
Liu, Yijia and
Wang, Yuxuan and
Zheng, Bo and
Liu, Ting",
editor = "Zeman, Daniel and
Haji{\v{c}}, Jan",
booktitle = "Proceedings of the {C}o{NLL} 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K18-2005",
doi = "10.18653/v1/K18-2005",
pages = "55--64",
abstract = "This paper describes our system (HIT-SCIR) submitted to the CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Universal Dependencies. We base our submission on Stanford{'}s winning system for the CoNLL 2017 shared task and make two effective extensions: 1) incorporating deep contextualized word embeddings into both the part of speech tagger and parser; 2) ensembling parsers trained with different initialization. We also explore different ways of concatenating treebanks for further improvements. Experimental results on the development data show the effectiveness of our methods. In the final evaluation, our system was ranked first according to LAS (75.84{\%}) and outperformed the other systems by a large margin.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="che-etal-2018-towards">
<titleInfo>
<title>Towards Better UD Parsing: Deep Contextualized Word Embeddings, Ensemble, and Treebank Concatenation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yijia</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuxuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system (HIT-SCIR) submitted to the CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Universal Dependencies. We base our submission on Stanford’s winning system for the CoNLL 2017 shared task and make two effective extensions: 1) incorporating deep contextualized word embeddings into both the part of speech tagger and parser; 2) ensembling parsers trained with different initialization. We also explore different ways of concatenating treebanks for further improvements. Experimental results on the development data show the effectiveness of our methods. In the final evaluation, our system was ranked first according to LAS (75.84%) and outperformed the other systems by a large margin.</abstract>
<identifier type="citekey">che-etal-2018-towards</identifier>
<identifier type="doi">10.18653/v1/K18-2005</identifier>
<location>
<url>https://aclanthology.org/K18-2005</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>55</start>
<end>64</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Better UD Parsing: Deep Contextualized Word Embeddings, Ensemble, and Treebank Concatenation
%A Che, Wanxiang
%A Liu, Yijia
%A Wang, Yuxuan
%A Zheng, Bo
%A Liu, Ting
%Y Zeman, Daniel
%Y Hajič, Jan
%S Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F che-etal-2018-towards
%X This paper describes our system (HIT-SCIR) submitted to the CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Universal Dependencies. We base our submission on Stanford’s winning system for the CoNLL 2017 shared task and make two effective extensions: 1) incorporating deep contextualized word embeddings into both the part of speech tagger and parser; 2) ensembling parsers trained with different initialization. We also explore different ways of concatenating treebanks for further improvements. Experimental results on the development data show the effectiveness of our methods. In the final evaluation, our system was ranked first according to LAS (75.84%) and outperformed the other systems by a large margin.
%R 10.18653/v1/K18-2005
%U https://aclanthology.org/K18-2005
%U https://doi.org/10.18653/v1/K18-2005
%P 55-64
Markdown (Informal)
[Towards Better UD Parsing: Deep Contextualized Word Embeddings, Ensemble, and Treebank Concatenation](https://aclanthology.org/K18-2005) (Che et al., CoNLL 2018)
ACL