@inproceedings{li-etal-2018-joint-learning,
    title = "Joint Learning of {POS} and Dependencies for Multilingual {U}niversal {D}ependency Parsing",
    author = "Li, Zuchao  and
      He, Shexia  and
      Zhang, Zhuosheng  and
      Zhao, Hai",
    editor = "Zeman, Daniel  and
      Haji{\v{c}}, Jan",
    booktitle = "Proceedings of the {C}o{NLL} 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
    month = oct,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/K18-2006/",
    doi = "10.18653/v1/K18-2006",
    pages = "65--73",
    abstract = "This paper describes the system of team LeisureX in the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Our system predicts the part-of-speech tag and dependency tree jointly. For the basic tasks, including tokenization, lemmatization and morphology prediction, we employ the official baseline model (UDPipe). To train the low-resource languages, we adopt a sampling method based on other richresource languages. Our system achieves a macro-average of 68.31{\%} LAS F1 score, with an improvement of 2.51{\%} compared with the UDPipe."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2018-joint-learning">
    <titleInfo>
        <title>Joint Learning of POS and Dependencies for Multilingual Universal Dependency Parsing</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Zuchao</namePart>
        <namePart type="family">Li</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Shexia</namePart>
        <namePart type="family">He</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zhuosheng</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hai</namePart>
        <namePart type="family">Zhao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-10</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Daniel</namePart>
            <namePart type="family">Zeman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jan</namePart>
            <namePart type="family">Hajič</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes the system of team LeisureX in the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Our system predicts the part-of-speech tag and dependency tree jointly. For the basic tasks, including tokenization, lemmatization and morphology prediction, we employ the official baseline model (UDPipe). To train the low-resource languages, we adopt a sampling method based on other richresource languages. Our system achieves a macro-average of 68.31% LAS F1 score, with an improvement of 2.51% compared with the UDPipe.</abstract>
    <identifier type="citekey">li-etal-2018-joint-learning</identifier>
    <identifier type="doi">10.18653/v1/K18-2006</identifier>
    <location>
        <url>https://aclanthology.org/K18-2006/</url>
    </location>
    <part>
        <date>2018-10</date>
        <extent unit="page">
            <start>65</start>
            <end>73</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint Learning of POS and Dependencies for Multilingual Universal Dependency Parsing
%A Li, Zuchao
%A He, Shexia
%A Zhang, Zhuosheng
%A Zhao, Hai
%Y Zeman, Daniel
%Y Hajič, Jan
%S Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F li-etal-2018-joint-learning
%X This paper describes the system of team LeisureX in the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Our system predicts the part-of-speech tag and dependency tree jointly. For the basic tasks, including tokenization, lemmatization and morphology prediction, we employ the official baseline model (UDPipe). To train the low-resource languages, we adopt a sampling method based on other richresource languages. Our system achieves a macro-average of 68.31% LAS F1 score, with an improvement of 2.51% compared with the UDPipe.
%R 10.18653/v1/K18-2006
%U https://aclanthology.org/K18-2006/
%U https://doi.org/10.18653/v1/K18-2006
%P 65-73
Markdown (Informal)
[Joint Learning of POS and Dependencies for Multilingual Universal Dependency Parsing](https://aclanthology.org/K18-2006/) (Li et al., CoNLL 2018)
ACL