@inproceedings{hershcovich-etal-2018-universal,
title = "{U}niversal {D}ependency Parsing with a General Transition-Based {DAG} Parser",
author = "Hershcovich, Daniel and
Abend, Omri and
Rappoport, Ari",
editor = "Zeman, Daniel and
Haji{\v{c}}, Jan",
booktitle = "Proceedings of the {C}o{NLL} 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K18-2010/",
doi = "10.18653/v1/K18-2010",
pages = "103--112",
abstract = "This paper presents our experiments with applying TUPA to the CoNLL 2018 UD shared task. TUPA is a general neural transition-based DAG parser, which we use to present the first experiments on recovering enhanced dependencies as part of the general parsing task. TUPA was designed for parsing UCCA, a cross-linguistic semantic annotation scheme, exhibiting reentrancy, discontinuity and non-terminal nodes. By converting UD trees and graphs to a UCCA-like DAG format, we train TUPA almost without modification on the UD parsing task. The generic nature of our approach lends itself naturally to multitask learning."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hershcovich-etal-2018-universal">
<titleInfo>
<title>Universal Dependency Parsing with a General Transition-Based DAG Parser</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Hershcovich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omri</namePart>
<namePart type="family">Abend</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ari</namePart>
<namePart type="family">Rappoport</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our experiments with applying TUPA to the CoNLL 2018 UD shared task. TUPA is a general neural transition-based DAG parser, which we use to present the first experiments on recovering enhanced dependencies as part of the general parsing task. TUPA was designed for parsing UCCA, a cross-linguistic semantic annotation scheme, exhibiting reentrancy, discontinuity and non-terminal nodes. By converting UD trees and graphs to a UCCA-like DAG format, we train TUPA almost without modification on the UD parsing task. The generic nature of our approach lends itself naturally to multitask learning.</abstract>
<identifier type="citekey">hershcovich-etal-2018-universal</identifier>
<identifier type="doi">10.18653/v1/K18-2010</identifier>
<location>
<url>https://aclanthology.org/K18-2010/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>103</start>
<end>112</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Universal Dependency Parsing with a General Transition-Based DAG Parser
%A Hershcovich, Daniel
%A Abend, Omri
%A Rappoport, Ari
%Y Zeman, Daniel
%Y Hajič, Jan
%S Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F hershcovich-etal-2018-universal
%X This paper presents our experiments with applying TUPA to the CoNLL 2018 UD shared task. TUPA is a general neural transition-based DAG parser, which we use to present the first experiments on recovering enhanced dependencies as part of the general parsing task. TUPA was designed for parsing UCCA, a cross-linguistic semantic annotation scheme, exhibiting reentrancy, discontinuity and non-terminal nodes. By converting UD trees and graphs to a UCCA-like DAG format, we train TUPA almost without modification on the UD parsing task. The generic nature of our approach lends itself naturally to multitask learning.
%R 10.18653/v1/K18-2010
%U https://aclanthology.org/K18-2010/
%U https://doi.org/10.18653/v1/K18-2010
%P 103-112
Markdown (Informal)
[Universal Dependency Parsing with a General Transition-Based DAG Parser](https://aclanthology.org/K18-2010/) (Hershcovich et al., CoNLL 2018)
ACL