@inproceedings{boros-etal-2018-nlp,
title = "{NLP}-Cube: End-to-End Raw Text Processing With Neural Networks",
author = "Boros, Tiberiu and
Dumitrescu, Stefan Daniel and
Burtica, Ruxandra",
editor = "Zeman, Daniel and
Haji{\v{c}}, Jan",
booktitle = "Proceedings of the {C}o{NLL} 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K18-2017/",
doi = "10.18653/v1/K18-2017",
pages = "171--179",
abstract = "We introduce NLP-Cube: an end-to-end Natural Language Processing framework, evaluated in CoNLL`s {\textquotedblleft}Multilingual Parsing from Raw Text to Universal Dependencies 2018{\textquotedblright} Shared Task. It performs sentence splitting, tokenization, compound word expansion, lemmatization, tagging and parsing. Based entirely on recurrent neural networks, written in Python, this ready-to-use open source system is freely available on GitHub. For each task we describe and discuss its specific network architecture, closing with an overview on the results obtained in the competition."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="boros-etal-2018-nlp">
<titleInfo>
<title>NLP-Cube: End-to-End Raw Text Processing With Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tiberiu</namePart>
<namePart type="family">Boros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="given">Daniel</namePart>
<namePart type="family">Dumitrescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruxandra</namePart>
<namePart type="family">Burtica</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce NLP-Cube: an end-to-end Natural Language Processing framework, evaluated in CoNLL‘s “Multilingual Parsing from Raw Text to Universal Dependencies 2018” Shared Task. It performs sentence splitting, tokenization, compound word expansion, lemmatization, tagging and parsing. Based entirely on recurrent neural networks, written in Python, this ready-to-use open source system is freely available on GitHub. For each task we describe and discuss its specific network architecture, closing with an overview on the results obtained in the competition.</abstract>
<identifier type="citekey">boros-etal-2018-nlp</identifier>
<identifier type="doi">10.18653/v1/K18-2017</identifier>
<location>
<url>https://aclanthology.org/K18-2017/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>171</start>
<end>179</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NLP-Cube: End-to-End Raw Text Processing With Neural Networks
%A Boros, Tiberiu
%A Dumitrescu, Stefan Daniel
%A Burtica, Ruxandra
%Y Zeman, Daniel
%Y Hajič, Jan
%S Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F boros-etal-2018-nlp
%X We introduce NLP-Cube: an end-to-end Natural Language Processing framework, evaluated in CoNLL‘s “Multilingual Parsing from Raw Text to Universal Dependencies 2018” Shared Task. It performs sentence splitting, tokenization, compound word expansion, lemmatization, tagging and parsing. Based entirely on recurrent neural networks, written in Python, this ready-to-use open source system is freely available on GitHub. For each task we describe and discuss its specific network architecture, closing with an overview on the results obtained in the competition.
%R 10.18653/v1/K18-2017
%U https://aclanthology.org/K18-2017/
%U https://doi.org/10.18653/v1/K18-2017
%P 171-179
Markdown (Informal)
[NLP-Cube: End-to-End Raw Text Processing With Neural Networks](https://aclanthology.org/K18-2017/) (Boros et al., CoNLL 2018)
ACL
- Tiberiu Boros, Stefan Daniel Dumitrescu, and Ruxandra Burtica. 2018. NLP-Cube: End-to-End Raw Text Processing With Neural Networks. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 171–179, Brussels, Belgium. Association for Computational Linguistics.