@inproceedings{onder-etal-2018-sparse,
    title = "{SP}arse: {K}o{\c{c}} {U}niversity Graph-Based Parsing System for the {C}o{NLL} 2018 Shared Task",
    author = {{\"O}nder, Berkay  and
      G{\"u}meli, Can  and
      Yuret, Deniz},
    editor = "Zeman, Daniel  and
      Haji{\v{c}}, Jan",
    booktitle = "Proceedings of the {C}o{NLL} 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
    month = oct,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/K18-2022/",
    doi = "10.18653/v1/K18-2022",
    pages = "216--222",
    abstract = "We present SParse, our Graph-Based Parsing model submitted for the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies (Zeman et al., 2018). Our model extends the state-of-the-art biaffine parser (Dozat and Manning, 2016) with a structural meta-learning module, SMeta, that combines local and global label predictions. Our parser has been trained and run on Universal Dependencies datasets (Nivre et al., 2016, 2018) and has 87.48{\%} LAS, 78.63{\%} MLAS, 78.69{\%} BLEX and 81.76{\%} CLAS (Nivre and Fang, 2017) score on the Italian-ISDT dataset and has 72.78{\%} LAS, 59.10{\%} MLAS, 61.38{\%} BLEX and 61.72{\%} CLAS score on the Japanese-GSD dataset in our official submission. All other corpora are evaluated after the submission deadline, for whom we present our unofficial test results."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="onder-etal-2018-sparse">
    <titleInfo>
        <title>SParse: Koç University Graph-Based Parsing System for the CoNLL 2018 Shared Task</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Berkay</namePart>
        <namePart type="family">Önder</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Can</namePart>
        <namePart type="family">Gümeli</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Deniz</namePart>
        <namePart type="family">Yuret</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-10</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Daniel</namePart>
            <namePart type="family">Zeman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jan</namePart>
            <namePart type="family">Hajič</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present SParse, our Graph-Based Parsing model submitted for the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies (Zeman et al., 2018). Our model extends the state-of-the-art biaffine parser (Dozat and Manning, 2016) with a structural meta-learning module, SMeta, that combines local and global label predictions. Our parser has been trained and run on Universal Dependencies datasets (Nivre et al., 2016, 2018) and has 87.48% LAS, 78.63% MLAS, 78.69% BLEX and 81.76% CLAS (Nivre and Fang, 2017) score on the Italian-ISDT dataset and has 72.78% LAS, 59.10% MLAS, 61.38% BLEX and 61.72% CLAS score on the Japanese-GSD dataset in our official submission. All other corpora are evaluated after the submission deadline, for whom we present our unofficial test results.</abstract>
    <identifier type="citekey">onder-etal-2018-sparse</identifier>
    <identifier type="doi">10.18653/v1/K18-2022</identifier>
    <location>
        <url>https://aclanthology.org/K18-2022/</url>
    </location>
    <part>
        <date>2018-10</date>
        <extent unit="page">
            <start>216</start>
            <end>222</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SParse: Koç University Graph-Based Parsing System for the CoNLL 2018 Shared Task
%A Önder, Berkay
%A Gümeli, Can
%A Yuret, Deniz
%Y Zeman, Daniel
%Y Hajič, Jan
%S Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F onder-etal-2018-sparse
%X We present SParse, our Graph-Based Parsing model submitted for the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies (Zeman et al., 2018). Our model extends the state-of-the-art biaffine parser (Dozat and Manning, 2016) with a structural meta-learning module, SMeta, that combines local and global label predictions. Our parser has been trained and run on Universal Dependencies datasets (Nivre et al., 2016, 2018) and has 87.48% LAS, 78.63% MLAS, 78.69% BLEX and 81.76% CLAS (Nivre and Fang, 2017) score on the Italian-ISDT dataset and has 72.78% LAS, 59.10% MLAS, 61.38% BLEX and 61.72% CLAS score on the Japanese-GSD dataset in our official submission. All other corpora are evaluated after the submission deadline, for whom we present our unofficial test results.
%R 10.18653/v1/K18-2022
%U https://aclanthology.org/K18-2022/
%U https://doi.org/10.18653/v1/K18-2022
%P 216-222
Markdown (Informal)
[SParse: Koç University Graph-Based Parsing System for the CoNLL 2018 Shared Task](https://aclanthology.org/K18-2022/) (Önder et al., CoNLL 2018)
ACL