@inproceedings{ji-etal-2018-antnlp,
title = "{A}nt{NLP} at {C}o{NLL} 2018 Shared Task: A Graph-Based Parser for {U}niversal {D}ependency Parsing",
author = "Ji, Tao and
Liu, Yufang and
Wang, Yijun and
Wu, Yuanbin and
Lan, Man",
editor = "Zeman, Daniel and
Haji{\v{c}}, Jan",
booktitle = "Proceedings of the {C}o{NLL} 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K18-2025/",
doi = "10.18653/v1/K18-2025",
pages = "248--255",
abstract = "We describe the graph-based dependency parser in our system (AntNLP) submitted to the CoNLL 2018 UD Shared Task. We use bidirectional lstm to get the word representation, then a bi-affine pointer networks to compute scores of candidate dependency edges and the MST algorithm to get the final dependency tree. From the official testing results, our system gets 70.90 LAS F1 score (rank 9/26), 55.92 MLAS (10/26) and 60.91 BLEX (8/26)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ji-etal-2018-antnlp">
<titleInfo>
<title>AntNLP at CoNLL 2018 Shared Task: A Graph-Based Parser for Universal Dependency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yijun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanbin</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Man</namePart>
<namePart type="family">Lan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Zeman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe the graph-based dependency parser in our system (AntNLP) submitted to the CoNLL 2018 UD Shared Task. We use bidirectional lstm to get the word representation, then a bi-affine pointer networks to compute scores of candidate dependency edges and the MST algorithm to get the final dependency tree. From the official testing results, our system gets 70.90 LAS F1 score (rank 9/26), 55.92 MLAS (10/26) and 60.91 BLEX (8/26).</abstract>
<identifier type="citekey">ji-etal-2018-antnlp</identifier>
<identifier type="doi">10.18653/v1/K18-2025</identifier>
<location>
<url>https://aclanthology.org/K18-2025/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>248</start>
<end>255</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AntNLP at CoNLL 2018 Shared Task: A Graph-Based Parser for Universal Dependency Parsing
%A Ji, Tao
%A Liu, Yufang
%A Wang, Yijun
%A Wu, Yuanbin
%A Lan, Man
%Y Zeman, Daniel
%Y Hajič, Jan
%S Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F ji-etal-2018-antnlp
%X We describe the graph-based dependency parser in our system (AntNLP) submitted to the CoNLL 2018 UD Shared Task. We use bidirectional lstm to get the word representation, then a bi-affine pointer networks to compute scores of candidate dependency edges and the MST algorithm to get the final dependency tree. From the official testing results, our system gets 70.90 LAS F1 score (rank 9/26), 55.92 MLAS (10/26) and 60.91 BLEX (8/26).
%R 10.18653/v1/K18-2025
%U https://aclanthology.org/K18-2025/
%U https://doi.org/10.18653/v1/K18-2025
%P 248-255
Markdown (Informal)
[AntNLP at CoNLL 2018 Shared Task: A Graph-Based Parser for Universal Dependency Parsing](https://aclanthology.org/K18-2025/) (Ji et al., CoNLL 2018)
ACL