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Abstract

Producing diverse paraphrases of a sentence is
a challenging task. Natural paraphrase cor-
pora are scarce and limited, while existing
large-scale resources are automatically gen-
erated via back-translation and rely on beam
search, which tends to lack diversity. We de-
scribe PARABANK 2, a new resource that con-
tains multiple diverse sentential paraphrases,
produced from a bilingual corpus using nega-
tive constraints, inference sampling, and clus-
tering. We show that PARABANK 2 signif-
icantly surpasses prior work in both lexical
and syntactic diversity while being meaning-
preserving, as measured by human judgments
and standardized metrics. Further, we illus-
trate how such paraphrastic resources may be
used to refine contextualized encoders, leading
to improvements in downstream tasks.

1 Introduction

The ability to understand and produce paraphrases
is a basic competency task, one that is often used
as a teaching aid to validate if a student under-
stands a statement or a concept. Current deep
learning systems struggle with this task, exhibit-
ing brittleness to both understanding and produc-
ing paraphrastic expressions (Iyyer et al., 2018).

One crucial factor behind this incompetence is
the dearth of sentential paraphrastic data. Many
works have sought to leverage the relative abun-
dance of sub-sentential paraphrastic resources in
paraphrase detection or generation (Napoles et al.,
2016). Yet, they fail to capture contextualized
word choices or syntactical variations, as word-
or phrase-level resources cannot incorporate infor-
mation from the whole input sentence.

Recent works have focused on leveraging bilin-
gual resources to create large sentence-level para-
phrastic collections using translation-based meth-
ods (Wieting and Gimpel, 2018; Hu et al., 2019).

I took this by mistake. I took it by mistake.vzal jsem ho omylem.

I took this by mistake. I took it by accident.vzal jsem ho omylem.

Source Target (Reference) Paraphrase

I took this by mistake. I took it by mistake.

… …

I took this by mistake. I picked it up accidentally.

Constrained

Unconstrained

⊕

⊖

⊖ ⊖

I took this by mistake. I took it by accident.vzal jsem ho omylem.

I took it by mistake.I picked it up accidentally.

Clustered

I picked up accidentally.
I picked it accidentally.

I took mistake.
I took it.

I took by accident.

Figure 1: Contrived example paraphrases from previ-
ous work (unconstrained and constrained—used with
permission) and ours (clustered).

However, these works are confined to using beam
search in decoding, which tend not to produce di-
verse candidates. One approach to force diverse
translations is the use of hard lexical constraints at
inference time (Hu et al., 2019). While effective in
some cases, current approaches to automatic selec-
tion of such constraints is based on heuristics and
task-oriented trial-and-error.

We present a novel resource with accurate and
collectively diverse paraphrases, generated using
stochastic decoding and clustering. By collec-
tively diverse, we mean that the paraphrases of a
given sentence cover a wide lexical and syntac-
tic spectrum. Given a bilingual input pair, our
core idea is to sample a large space of outputs
from a translation system, cluster the results ac-
cording to a notion of token-sequence similarity,
score them with two translation models (one in
each direction), and then select the best item from
each cluster. We believe that sampling from the
word distribution at each decoder time-step bet-
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ter preserves the decoder’s level of uncertainty,
which is intrinsic to the goals of paraphrasing.
We also sample ancillary lexical constraints to
discourage, instead of explicitly prohibiting (Hu
et al., 2019), certain words from being used by the
decoder. While our experiment produces a large-
scale English resource, our approach is dependent
only on the availability of large bitexts and so is
language-agnostic. We chose to build an English
resource from CzEng to enable a direct compari-
son with Wieting and Gimpel (2018) and Hu et al.
(2019).

Our contributions include:

• A large, high quality paraphrase collection1

with up to 5 paraphrases per reference, close
to 100 million pairs in total, which are more
diverse than prior work in two distinct ways,
as measured by standardized metrics;

• An evaluation of semantic similarity, lexi-
cal and syntactic diversity, compared against
prior works, along with results on Sentence
Textual Similarity (STS) Benchmark;

• Experiments on how our resource can be
leveraged to improve performance on a set of
language tasks.

2 Paraphrase generation pipeline

Prior works in constructing sentential paraphras-
tic resources have worked from large collections
of bitext, producing translations of the foreign
language sentence which, when paired with the
target-language reference, constitute a set of para-
phrases. Working from the very large CzEng par-
allel corpus, Wieting and Gimpel (2018) produced
a single paraphrase for each English sentence by
translating from the Czech source. Hu et al. (2019)
expanded on this by translating the Czech sen-
tence several times, using positive or negative con-
straints obtained from the English reference.

In terms of producing diverse paraphrases, both
approaches are limited because they rely on beam
search. There are potentially billions of para-
phrases of a sentence (Dreyer and Marcu, 2012),
yet beam search with recurrent models can only
search a constant subset of them (in the beam
size). There are techniques for producing more di-
verse paraphrases, such as the use of positive and
negative constraints (Hu et al., 2019) or syntactic

1Available at http://nlp.jhu.edu/parabank2

fragments (Iyyer et al., 2018), but these require the
user to manually specify them, which can be cum-
bersome and unreliable.

We follow these prior works in working with
the CzEng, a Czech–English dataset (Bojar et al.,
2016b), due to its size, diverse domain coverage,
and rich syntactic variations (Wieting and Gim-
pel, 2018), and to allow for a direct comparison
in methodologies. However, we propose a new
approach to paraphrase generation designed to in-
crease paraphrastic diversity, using a multi-step
process: the first part of the pipeline generates a
large number of candidate paraphrases through a
random process, and the second part whittles them
down to a much shorter list. For each {source, tar-
get} input pair, we run the following pipeline:

1. Constrained sampling. We sample trans-
lations using a source→target translation
model with lexical constraints. We obtain
negative constraints by randomly selecting a
set of tokens from the “source”, so that they
are not allowed to appear in the translations.
Then, we decode each translation by sam-
pling from only the top-k most probable to-
kens at each time step, after excluding con-
strained tokens (§2.1).

2. Dual scoring. The set of samples is then
scored against the original source input us-
ing a target→source translation model. The
scores from the forward and backward mod-
els are summed (§2.2).

3. Clustering. The samples are then clustered.
The best item from each cluster (according to
the summed score) is then returned (§2.3).

2.1 Constrained sampling

Sampling is a more effective way to explore model
search space than beam search, particularly in
auto-regressive models that do not permit dynamic
programming. We introduce two means by which
we can expand the hypothesis space, and pro-
duce a more diverse set of paraphrases, relative to
straightforward beam search.

Top-k sampling In auto-regressive neural MT,
the standard sampling approach would be to
choose a word wt at each decoder timestep t by
sampling from the distribution P (wt | w1...t−1).
This approach has been found effective over 1-
best beam search in generating source sentences in

http://nlp.jhu.edu/parabank2
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back-translation (Edunov et al., 2018). However,
for paraphrasing, this is not ideal, since words that
are not semantically licensed by the source may be
selected. Instead, we propose top-k sampling, in
which we choose wt from the top k most-probable
tokens at each time step. This way, we allow the
model to sample flexibly, vastly opening up the
hypothesis space, without creating a large risk of
producing nonsensical translations.

Randomized negative constraints Negative
constraints are tokens that are not permitted in the
decoder output. They are not formally described
in the literature, but an implementation was
provided with the associated positive constraints
(Post and Vilar, 2018). Negative constraints can
be provided as tokens or phrases; the decoder
tracks the progress of generation through each
constraint and adds an infinite cost to the final
word of any constraints, precluding its selection
in both sampling and beam search.

In order to further increase sample diversity
when generating the hypotheses (§2.1), we obtain
negative constraints from the source by randomly
choosing a subset of tokens. We do this indepen-
dently multiple times for each input sentence. This
provides new sets of constraints for the inputs, in-
dependent of the decoding.

Note that we use subword regularization (Kudo,
2018) during training, causing different subword
segmentations to be applied to training data types
each time they are encountered and helping to
build more robust models. We only constrain on
the Viterbi segmentation, effectively discouraging
negatively constrained words from appearing in
the output, instead of prohibiting them, since there
are often ways for the model to produce a word by
generating a different decomposition.

2.2 Back-translation likelihoods

Some semantic changes during paraphrasing, es-
pecially omission, are not well-reflected by the
(forward) probability pgenerate from the generat-
ing model. However, a model running in the other
direction can penalize this omission, as found by
Goto and Tanaka (2017). Thus, we obtain the
back-translation probability pback of each sampled
candidate paraphrase, and define the final score for
each candidate paraphrase as the joint probability
p∗ = pgenerate ∗ pback, which is the sum of nega-
tive log-likelihood.

2.3 Edit-distance-based clustering

The above process produces a large set of transla-
tions of the source sentence. Many of them will be
minor variants of one another, but we expect that
there will be a lot of variety in the large pool. The
task now is to reduce this pool to a small set of
collectively diverse paraphrastic candidates.

We address this problem with k-means clus-
tering via Levenshtein (or edit) distance (Miller
et al., 2009). We compute this on lowercased,
segmented candidates, after striping punctuation.
Clusters are initialized with the k furthest candi-
dates measured by edit-distance. We also add the
reference sentence as the centroid of an additional
cluster and skip the re-centering for that cluster.
This improves the chance of the k clusters con-
gregating candidates different from the reference
in different ways. When the clustering has con-
verged, we take the candidate with the best score
from each cluster (except for the one with the ref-
erence sentence), rank them by score, and take the
best n as the final output.

3 Evaluations

3.1 Data

All of our experiments are based on the CzEng 1.7
corpus, a subset of CzEng 1.6 (Bojar et al., 2016b)
that has been chosen for higher quality. Based
on experience with data quality issues in neural
MT (Ott et al., 2018; Junczys-Dowmunt, 2018),
we decided to further clean the corpus. First,
we normalize Unicode punctuation, and keep only
bilingual pairs whose English side can be encoded
with latin-1 and Czech side with latin-2.
We then filter the data with dual cross-entropy fil-
tering (Junczys-Dowmunt, 2018). We use Sock-
eye (Hieber et al., 2017) to train two NMT mod-
els, CS–EN and EN-CS, on a relatively clean sub-
set of the data provided for WMT 2018 (Bojar
et al., 2016a): Europarl, Wiki titles, and news
commentary. We use 4 layer Transformer models
(Vaswani et al., 2017) trained to convergence, with
held-out likelihood evaluated on a random 500-
sentence subset of the WMT16 and WMT17 news
test data. These models are then used to score
all the remaining CzEng data after deduplication.
We kept all sentences with a model score (negative
log-likelihood) of less than 3.5. After applying the
above two filters, we keep 19, 723, 003 out of the
57, 065, 358 pairs in CzEng 1.7.
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3.2 Translation models

We train two new translation models on the filtered
data, the CS–EN generation model (for generat-
ing English candidates via sampling) and the EN–
CS scoring model (for providing backwards scores
of the candidates). Both are Transformer models
built with AWS SOCKEYE. The generation model
is a 12 layer Transformer with a model and em-
bedding size of 768, 12 attention heads, a feed-
forward layer size of 3072. The scoring model
has 6 layers, model and embedding size of 512,
8 attention heads, and a feed-forward layer size of
2048.

All training data is pre-processed with subword
sampling using SentencePiece2 (Kudo, 2018) with
a vocabulary size of 20k and character coverage
of 0.9999. We used separate models for Czech
and English. At inference time, we use the Viterbi
segmentation of each input sentence, for both the
generation and scoring models.

3.3 Parameters

There are a few parameters involved in the sample-
score-cluster pipeline. For each Czech input sen-
tence, we generate 5 sets of random constraints
(§2.1), creating 5 variants of the input. From each
of these inputs, we generate 30 samples using top-
k sampling with k = 10 (i.e., at each timestep,
the model randomly chooses from the top 10 most
probable words, according to their scaled distribu-
tion, and excluding negatively constrained words).
The resulting 150 sentences are scored, and any-
thing with a combined score greater than 3.5 is
thrown out. The remaining sentences are clustered
into 8 clusters, one of them centered on the En-
glish reference. The reference cluster is thrown
out, and a list of the best-scoring translation from
the remaining 7 clusters is constructed. From this
list, the top 5 translations are returned as hypothe-
ses.

3.4 Setup

We follow the evaluation framework of Hu et al.
(2019), which judged semantic similarity between
paraphrases and their reference through human
evaluation, and lexical diversity via automatic
metrics. We use the evaluation result made pub-
lic by Hu et al. (2019) to enable a direct compar-
ison. Rather than focusing on improving seman-

2https://github.com/google/
sentencepiece

tic similarity, which is limited by the quality of
the bilingual resource, we seek to build a resource
that contains both more lexical and syntactical di-
versity.

We obtained the evaluation set from Hu et al.
(2019), which contains 400 English sentences
from CzEng. Due to additional filtering, 24 out
of 400 (6%) reference sentences aren’t in PARA-
BANK 2 and therefore excluded in this evaluation.

We set the output size n = 5. After sorting the
candidates by negative log-likelihood for each ref-
erence, we treat candidates at each rank as an in-
dividual system to investigate the expected quality
of paraphrases under our approach. For references
that produce fewer than 5 paraphrases, the para-
phrase with the highest negative log-likelihood is
duplicated to fill in ranks that otherwise would be
empty. We also artificially pick the paraphrase
with the maximum, minimum, and median human
semantic similarity judgment under each reference
as three additional oracle systems.

3.5 Semantic similarity via human judgments
For a fair comparison, we used the evaluation
setup released by Hu et al. (2019), which uses the
interface from EASL (Sakaguchi and Van Durme,
2018) to collect semantic similarity and gammat-
icality judgments. Each human annotator is pre-
sented with a reference sentence and five para-
phrases from different sources. Annotators use a
slider bar under each paraphrase to rate the seman-
tic similarity from 0 (Opposite/Irrelevant) to 100
(Identical Meaning). Annotators are also asked
to comment on whether the paraphrase is ungram-
matical or nonsensical. The reference sentence is
repeated next to the paraphrase for easier visual
comparison.

Each paraphrase receives at least 3 independent
judgments. Following Hu et al. (2019), we ran-
domly add in the reference sentence as a para-
phrase and filter out annotators who fail to score
them 100 more than 10% of such encounters. The
result includes only annotators who contributed at
least 25 judgments and is shown in Tab. 1.

3.6 Paraphrastic diversity
BLEU has been a successful metric in evaluating
MT systems. However, as noted earlier, monolin-
gual paraphrasing has inherently different objec-
tives than cross-lingual translation. BLEU, in tan-
dem with human evaluation in semantic similar-
ity, makes a good metric for paraphrastic diversity.

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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System Semantics↑ Grammar↑ 1-BLEU↑ ∩/∪ ↓ Tree ED↑ Len. Ratio

PARANMT 83.2 89.2 66.29 48.76 6.62 1.00
PARABANK17 84.5 92.1 62.85 46.21 6.21 1.01
PARABANK34 85.7 92.7 58.16 51.01 6.51 1.02

Our work1 84.4±.0 90.2±.2 75.83±.10 37.75±.02 7.16±.05 1.04±.00
Our work2 83.8±.0 88.3±.4 76.98±.07 36.19±.36 7.15±.17 1.05±.00
Our work3 83.5±.0 87.3±.1 78.29±.69 35.22±.43 7.47±.11 1.05±.00
Our work4 83.2±.2 86.6±.8 78.92±.19 34.49±.06 7.51±.11 1.06±.01
Our work5 81.7±.1 87.3±.8 81.55±.35 32.50±.32 7.80±.19 1.09±.00

Our workmax 91.2±.2* 93.1±.8* 76.71±.11 37.15±.33 7.38±.06 1.05±.01
Our workmed. 84.1±.1 88.2±.1 78.34±.10 35.34±.25 7.52±.08 1.06±.00
Our workmin 72.5±.2 81.5±.2 79.29±.21* 33.13±.55* 7.65±.10* 1.05±.00

Table 1: Paraphrastic diversity measured by (1-BLEU)×100, bag-of-word intersection/union score×100, and Tree
edit-distance. Systems from this work that receive the best human judgments, worst human judgments, and the
median, are included in the table. A higher 1-BLEU suggests higher paraphrastic diversity; a higher Intersec-
tion/Union score suggests a higher lexical diversity; a higher Tree edit-distance suggests a higher syntactic diver-
sity. Best in each column, excluding oracle systems, is in bold. * denotes best oracle systems.

Here, we use 1-BLEU to measure how different
the paraphrases are to the references.

We generate 5 paraphrases for each reference
sentence using the approach outlined in this work.
To account for randomness, we average over two
independent runs in the result, shown in Tab. 1.

We consider two sources of paraphrastic diver-
sity: 1) lexical diversity, the use of different words;
and 2) syntactic diversity, the change of sentence
or phrasal structure. We separately measure them
using bag-of-word Intersection/Union scores and
parse-tree edit-distances, respectively.

Lexical diversity A sentence is lexically differ-
ent from the reference when it uses lexical para-
phrases (e.g., synonyms) to convey similar mean-
ings. We calculate the case-insensitive piece In-
tersection/Union score after striping punctuation
and the SentencePiece white space symbol. All
pieces are put to lowercase and into a set. The
more pieces the two sentences share, the higher the
score will be. The Intersection/Union scores be-
tween the reference and the paraphrases are shown
in Tab. 1.

Syntactic diversity We consider the edit-
distance between the parse trees of the reference
and the paraphrase as a metric of syntactic
diversity. Parse tree edit-distance is considered
a useful feature in NLP tasks (Yao et al., 2013).
The more syntactic variations there are between
two sentences, the larger the tree edit-distance

will be. We consider only the top 3 levels of the
parse trees, excluding any terminals. Sentences
are parsed with Stanford CoreNLP (Manning
et al., 2014); the tree edit-distance is calculated
with the APTED (Pawlik and Augsten, 2015a,b)
algorithm. The average tree edit-distance for each
system is shown in Tab. 1.

Diversity among paraphrases Hu et al. (2019)
produced multiple paraphrases for each reference.
While shown to be diverse compared to the refer-
ence, the authors did not investigate whether these
paraphrases are trivial rewrites of one another, as
it is likely the case with beam search under a few
lexical constraints. Our clustering step is specifi-
cally designed to retrieve collectively diverse para-
phrases.

We use the same metrics to evaluate pairs of
systems from our work and compare them against
PARABANK (Hu et al., 2019), as shown in Tab. 2.
The max/min/median systems are oracle systems
derived from human semantic similarity judg-
ment scores. The human judgments from Tab. 1
show our paraphrases are of comparable quality to
PARABANK, while maintaining a much higher de-
gree of diversity among paraphrases of the same
reference, as shown by automatic metrics.

3.7 Semantic similarity on STS Benchmark
In addition to evaluating via human judgments,
we consider the same evaluation mechanism as
PARANMT (Wieting and Gimpel, 2018): the use
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Systems Compared 1-BLEU↑ ∩/∪ ↓ Tree ED↑
PARABANK17/PARABANK34 20.58 80.93 2.26

Our work1/Our work3 64.16±.21 52.77±.48 5.51±.01
Our work3/Our work5 71.05±.22 45.00±.51 6.40±.19
Our work1/Our work5 69.46±.27 46.79±.12 6.25±.18

Our workmax/Our workmin 66.03±.86 49.10±.16 5.84±.33

Table 2: Collective diversity within our work compared to PARABANK, as measured by (1-BLEU)×100, intersec-
tion/union score×100, and parse tree edit-distance.

of paraphrase corpora as training data for the Se-
mantic Textual Similarity (STS) task. STS aims
to measure the degree of equivalence in meaning
or semantics between a pair of sentences. No-
tably, Agirre et al. (2016) having been a part of
the SemEval workshop (2012 -2017). The evalua-
tion consists of human annotated English sentence
pairs, scored on a scale of 0 to 5 to quantify simi-
larity of meaning, with 0 being the least, and 5 the
most similar.

Wieting and Gimpel (Wieting and Gimpel,
2018) compared three encoding mechanisms:
WORD, TRIGRAM and LSTM. The WORD
model (Wieting et al., 2016) averages the embed-
ding for each word in the sentence into a fixed
length vector embedding for the sentence; the
TRIGRAM model (Huang et al., 2013) averages
over character trigrams; and the LSTM (Hochre-
iter and Schmidhuber, 1997) approach averages
over the final hidden states to obtain the sentence
embedding.

Encoders are trained on paraphrase pairs (s, s′)
with a margin based loss function l(s, s′, t, t′) =

max(0, δ − cos[g(s), g(s′)] + cos[g(s), g(t)])+

max(0, δ − cos[g(s), g(s′)] + cos[g(s′), g(t′)])

where g is one of (WORD, TRIGRAM, LSTM)
and (t, t′) is a negative sample selected from
a megabatch, an aggregation of m mini-
batches (Wieting and Gimpel, 2018).3

We evaluate the WORD model trained4 on
PARANMT, PARABANK and PARABANK 2 (our
work). We retrieved the paraphrases from PARA-

3We confirmed this loss with Wieting and Gimpel, that it
captures their open implementation, which we employ. Wi-
eting and Gimpel (2018) described their loss as: max(0, δ −
cos(g(s), g(s′)) + cos(g(s), g(t))), which is equivalent un-
der their assumption the paraphrases are equivalent.

4https://github.com/jwieting/
para-nmt-50m

System Pearson’s r Spearman’s r

PARANMT 75.378 76.322
PARABANK 76.006 76.961
Our work1 76.546 77.528
Our work2 76.143 77.240
Our work3 76.397 77.500
Our work4 76.414 77.612
Our work5 75.882 77.075

Our work1/5 75.680 76.882

Table 3: Pearson’s r × 100 and Spearman’s r × 100
computed on STS 2016 task. Our work1/5 contains
paraphrase pairs from system1 paired with system5,
while all other systems are paired with the reference
sentence.

BANK and our work that share the same refer-
ences as PARANMT-5M. Our work is evaluated
as 5 systems, based on the rank in the output; the
last available paraphrase is used when lower ranks
are empty. We also include a system that uses
a pair of paraphrases, instead of a reference and
a paraphrase. We keep PARABANK paraphrases
that have a bag-of-word intersection/union score
of 0.7 or less, and use the 1-best based on regres-
sion scores. In Tab. 3, we report Pearson’s r and
Spearman’s r on the STS’16 test set. Sentence em-
beddings trained on our work exhibit higher cor-
relation with human judgments, which reflects the
superior paraphrastic diversity of the corpus.

3.8 Improving contextualized encoders with
paraphrastic data

Paraphrastic data can be used to fine-tune contex-
tualized encoders such as BERT (Devlin et al.,
2018). We frame the fine-tuning task as para-
phrase identification (Das and Smith, 2009),
where given a pair of sentences, the task is to
classify them as paraphrases or non-paraphrases.
To generate the training data, we extract, for each

https://github.com/jwieting/para-nmt-50m
https://github.com/jwieting/para-nmt-50m
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QQP MNLI STS-B MRPC

BERT 87.90 83.86 88.40 84.00
pBERT 88.14 82.64 88.59 86.55

Table 4: F1 scores are reported for QQP and MRPC,
Spearman correlations are reported for STS-B, and ac-
curacy scores are reported for MNLI. Numbers re-
ported on Dev set

Type BERT pBERT

F1 HasAns 76.81 74.21
NoAns 71.44 74.95
Total 74.12 74.58

Exact Match HasAns 70.34 68.00
NoAns 71.44 74.95
Total 70.89 71.48

Table 5: SQuAD 2.0 results on dev set.

sentence in PARANMT-5M, the sentence embed-
dings generated by the WORD model trained in
§3.7. For each sentence s, we then find the (ap-
proximate) nearest neighbour n which is not s′,
among all of the sentences. We thus obtain two
pairs, where (s, s′) is a paraphrase pair, and (s, n)
is a non-paraphrase pair. We use these to train a
binary classifier with cross-entropy loss.

We then use this BERT fine-tuned on para-
phrases (henceforth pBERT) for fine-tuning on
SQuAD 2.0 (Rajpurkar et al., 2018) and 4 NLP
tasks present in the General Language Under-
standing Evaluation (GLUE) benchmark (Wang
et al., 2019): Quora Question Pairs (QQP) (Chen
et al., 2017), Multi-Genre Natural Language Infer-
ence (MNLI) (Williams et al., 2018), the Seman-
tic Textual Similarity Benchmark (STS-B) (Agirre
et al., 2016), and the Microsoft Research Para-
phrase Corpus (MRPC) (Dolan et al., 2004). Fol-
lowing the model formulation, hyper-parameter
selection and training procedure specified in De-
vlin et al. (2018), we add a single task-specific,
randomly initialized output layer for the classifier.

We present our results in Tab. 4 and Tab. 5.
We observe gains for STS-B, MRPC and QQP,
tasks strongly related to paraphrase identifica-
tion. Fine-tuning on our paraphrase corpus also
improves performance on SQuAD, a question-
answering task, while slightly degrading perfor-
mance on MNLI. Overall, simple fine-tuning of
BERT on our corpus leads to improvements on

downstream tasks, in particular when the task is
related to paraphrase detection.

4 Related works

4.1 Paraphrastic resources

Paraphrastic resources exist across different
scopes (i.e., lexical, phrasal, sentential) and differ-
ent creation strategies (i.e., manually curated, au-
tomatically generated). For a more comprehensive
survey on data-driven approaches to paraphrasing,
please refer to Madnani and Dorr (2010).

Sub-sentential resources WordNet (Miller,
1995), FrameNet (Baker et al., 1998), and
VerbNet (Schuler, 2006) can be used to extract
paraphrastic expressions at lexical levels. They
contain the grouping of words or phrases that
share similar semantics and sometimes entailment
relations. While FrameNet and VerbNet do
have example sentences or frames where lexical
units are put into contexts, there is no explicit
paraphrastic relations among these examples.
Also, these datasets tend to be small, as they
were curated manually. There have been efforts
to augment such resources with automatic meth-
ods (Snow et al., 2006; Pavlick et al., 2015b),
but they are still confined to lexical level and
sometimes require the use of other paraphrastic
resources (Pavlick et al., 2015b).

PPDB (Ganitkevitch et al., 2013; Pavlick et al.,
2015a) automated the generation of lexical para-
phrases via bilingual pivoting, taking advantage
of the relative abundance of bilingual corpora.
While significantly larger and more informative
(e.g., ranking, entailment relations, etc.) than the
above manually curated resources, PPDB suffers
from ambiguity as words or phrases are removed
from their sentential contexts.

Sentential resources There exists multiple hu-
man translations in the same language for some
classic readings. Barzilay and McKeown (2001)
sought to extract lexical paraphrastic expression
from such sources. Unfortunately such resources
– along with those manually constructed for text
generation research (Robin, 1995; Pang et al.,
2003) – are small and limited in domain.

PARANMT and PARABANK are two much
larger sentential paraphrastic resources created
through back-translation.
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Reference:
Real life is sometimes thoughtless and mean. Hey, stop right there!

PARANMT:
real life is sometimes reckless and cruel . hey , stop .

PARABANK:
The real life is occasionally ruthless and cruel. Stay where you are!
The real world is occasionally ruthless and cruel.
The real life is sometimes reckless and cruel.

Our work:
True life is sometimes ruthless and cruel. Hold your position!
Actual life is sometimes ruthless and cruel. Stay where you are!
Sometimes real life is ruthless and cruel. Stay in position!
Real life can be inconsiderate, cruel sometimes. Remain where you are!
Real living is a harsh and unscrupulous one, at times. Stay put!

Table 6: Selected examples from our work, compared to paraphrastic resources with prior approaches. Our work
has paraphrases that are not only different from the reference, but also diverse among themselves.

4.2 Translation-based Approaches

PARANMT is an automatically generated senten-
tial paraphrastic resource through back-translating
bilingual resources. It leveraged the imperfect
ability of Neural Machine Translation (NMT) to
recreate the translation target by conditioning on
the source side of the bitext.

PARABANK took a similar approach but with
the inclusion of lexical constraints from the tar-
get side of the bitext. This step allows for multi-
ple translations from one bilingual sentence pair
and promotes lexical diversity. Their work, de-
spite being larger and shown to be less noisy than
PARANMT, relies on heuristics to produce hard
constraints on the decoder, which often causes un-
intended changes in semantics or grammar.

Both works largely follow standard approaches
in NMT, generating 1-best hypotheses given a
source text and a set of constraints using beam
search. Sentential paraphrasing, nevertheless, has
fundamentally different objectives than MT. The
latter strives to find the best elicitation that is both
fluent and semantically close to the foreign text to
convey information across languages. The former,
on the other hand, seeks syntactically and lexically
diverse expressions that convey the same meaning,
with the goal of capturing the intrinsic flexibility
and uncertainty of human communications. This
work attempts to adapt the methodology to these
objectives of monolingual paraphrasing.

4.3 Leveraging paraphrases in NLP

In the context of semantic parsing, Berant and
Liang (2014) use a paraphrase classification mod-
ule to determine the match between a canonical
utterance and a logical form, both using a phrase
table and distributed representations. To im-
prove question answering (QA), Duboue and Chu-
Carroll (2006) generate paraphrases of a given
question using back-translation, and optionally re-
place the original question with the most rele-
vant paraphrase. Dong et al. (2017) tackle QA by
marginalizing the probability of an answer over a
set of paraphrases, generated using rule-based and
NMT-based methods. Fader et al. (2013) use a cor-
pus of questions with paraphrases, to construct a
corpus of semantically equivalent queries.

The task of paraphrase identification, which we
use as a fine-tuning objective, has been studied as a
task in itself. Das and Smith (2009) use grammars
to perform generative modeling of paraphrases.
Madnani et al. (2012) identify paraphrases by re-
lying only on MT metrics as features. Ferreira
et al. (2018) feed sentence similarity measured
with hand-crafted features to machine learning al-
gorithms. Convolutional neural networks have
been introduced by Yin and Schütze (2015) and
Chen et al. (2018), and further augmented with
LSTMs (Kubal and Nimkar, 2018) and attention
mechanisms (Fan et al., 2018).
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5 Conclusions and future work

A presumed goal for building a sentential para-
phrase resource is to capture different ways of ex-
pressing the same thing: diversity matters. Previ-
ous work on paraphrastic resource creation relied
on decoding techniques from NMT using bilingual
corpora, with limited success in promoting diverse
expressions. We have presented a new community
resource produced by sampling and clustering. We
evaluated our method against prior works (Wiet-
ing and Gimpel, 2018; Hu et al., 2019) and found
significant gains in both lexical and syntactic di-
versity. Further, we’ve shown how straightforward
fine-tuning of a state-of-the-art contextual encoder
on our resource can improve performance on a va-
riety of language tasks.
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