
Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 404–418
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

404

Automated Pyramid Summarization Evaluation

Yanjun Gao1, Chen Sun2, and Rebecca J. Passonneau1

1,2Department of Computer Science and Engineering
Pennsylvania State University

1 {yug125,rjp49}@cse.psu.edu
2chensunx@gmail.com

Abstract
Pyramid evaluation was developed to assess
the content of paragraph length summaries of
source texts. A pyramid lists the distinct units
of content found in several reference sum-
maries, weights content units by how many
reference summaries they occur in, and pro-
duces three scores based on the weighted con-
tent of new summaries. We present an au-
tomated method that is more efficient, more
transparent, and more complete than previous
automated pyramid methods. It is tested on a
new dataset of student summaries, and histori-
cal NIST data from extractive summarizers.

1 Introduction

During the 70’s and 80’s, educational pychologists
studied human summarization skills, and their de-
velopment throughout secondary school and be-
yond. Three separate skills are acquired in the
following order: selection of important informa-
tion, abstraction through vocabulary generaliza-
tion and sentence fusion, and integration with
background knowledge (van Dijk and Kintsch,
1977; Brown and Day, 1983). A recent com-
parison of summaries from human experts ver-
sus extractive summarizers on forty-six topics
from the TAC 2010 summarization challenge used
automatic caseframe analysis, and found essen-
tially these same properties in the human sum-
maries, and not in the extractive ones (Cheung
and Penn, 2013). Abstractive summarizers, how-
ever, are beginning to replicate the first two of
these behaviors, as illustrated in many published
examples based on encoder-decoder and pointer-
generator neural architectures (Nallapati et al.,
2016; See et al., 2017; Hsu et al., 2018; Guo et al.,
2018). Summarization evaluation relies almost ex-
clusively on ROUGE (Lin, 2004), an automated
tool that cannot directly assess importance of sum-
mary content, or novel wording for the same infor-

Aligned PyrEval (W=5) and Manual (W=4) SCU
RSUM1 For example, an art gallery in

London held an exhibit. with
digital curr. as the preferred . . .

RSUM2 However, there has been some positive
news as bus. such as a Scottish Hotel
& a London Art Gallery are allowing
cust. to pay with crypto currencies

RSUM3 Cellan-Jones (2018) writes recent days
both a London art gallery and a
Scottish hotel . . . to allow their
cust. to pay with crypto-currencies.

RSUM4 by suggesting that {a London art gallery
& Scottish hotel chain plan to . . . support
for different crypto-currencies.}Paraph

. . .{ that the London based art gallery
would use only crypto currencies}Paraph

RSUM5 Businesses located in London and
Scotland have made enquiries to allow
payment from customers using cryptoc.

Match to a student summary that used synomyms:
a craftsmanship exhibition alongside a Scottish inn
have plans for their clients to pay in digital currencies

Figure 1: Alignment of a single PyrEval SCU of weight 5
to a manual SCU of weight 4 from a dataset of student sum-
maries. The manual and automated SCUs express the same
content, and their weights differ only by one. For each of
five reference summaries (RSUM1-RSUM5), exact matches
of words between the PyrEval and manual contributor are in
bold, text in plain font (RSUM2, RSUM4) appears only in the
manual version, and text in italics appears only in the PyrEval
version. Paraphrases of the same content from RSUM4 were
identified by human annotators (plain font) and PyrEval (ital-
ics). Also shown is a matching segment from a student sum-
mary, where the student used synonyms of some of the words
in the reference summaries.

mation. We present an automated method to assess
the importance of summary content, independent
of wording, based on a widely used manual evalu-
ation called pyramid (Nenkova et al., 2007).

The pyramid method and ROUGE both use
multiple summaries written by humans as refer-
ences to assess new summaries. The manual pyra-
mid method requires human annotators to iden-
tify Summary Content Units (SCUs) by grouping
phrases from different reference summaries into
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the same SCU if they express the same proposi-
tional content. Figure 1 illustrates an SCU from
a manual pyramid applied to college student sum-
maries of articles on cryptocurrency, with contri-
butions from four of the five reference summaries
(RSUM1-RSUM4). It is aligned to a nearly iden-
tical SCU constructed by PyrEval, with a contri-
bution from the fifth reference (RSUM5). Previ-
ous work has shown that these kinds of discrep-
ancies occur between human annotators, and have
little effect on interannotator agreement or rank-
ings of summarizers (Passonneau, 2010). The im-
portance of an SCU increases with the number of
reference summaries that express it, as indicated
by its weight. If an evaluation summary expresses
the same content as an SCU, its score is increased
by the SCU weight (details below). ROUGE al-
lows the user to select among numerous ways to
measure ngram overlap of a new summary to the
references, e.g., for different ngram sizes with
or without skips, and with or without stemming.
ROUGE does not, however, consider the relative
importance of content, or account for synonyms
of words that appear in the reference summaries.

We present PyrEval,1 which outperforms previ-
ous work on automated pyramid in accuracy and
efficiency. It produces human-readable pyramids,
and prints matches between SCUs and evaluation
summaries, which can support feedback for edu-
cational applications. PyrEval performs well on a
new dataset of student summaries, where we ap-
plied the pyramid annotation. We also present re-
sults for TAC 2010 automated summaries, one of
the more recent years where NIST applied pyra-
mid evaluation. While ROUGE-2 more accurately
identifies system differences than PyrEval, its per-
formance is more sensitive to different topics.

2 Pyramid Content Analysis

The challenge in evaluation of summary content is
that different equally good human summaries have
only partial content overlap. van Halteren and
Teufel (2003) annotated factoids (similar to FOL
propositions, and to SCUs) for fifty summaries of
a Dutch news article, and found a Zipfian distribu-
tion of factoid frequency: a small number of fac-
toids represent 80% of the content in summaries,
but a very long tail of rare content accounts for
20%. Pyramid annotation of ten summaries for a

1Available at https://github.com/serenayj/
PyrEval

few DUC 2003 topics had a similar a Zipfian dis-
tribution (Nenkova and Passonneau, 2004).

Pyramid has had extensive reliability test-
ing. A sensitivity analysis showed four reference
summaries were sufficient for score reliability,
and with probability of misranking errors below
0.01% (Nenkova and Passonneau, 2004; Nenkova
et al., 2007). Interannotator agreement using Krip-
pendorff’s alpha on ten pyramids ranged from
0.61 to 0.89, and averaged 0.78 on matching new
summaries to pyramids for 16 systems on 3 top-
ics each (Passonneau, 2010). Comparison of two
manual pyramid evaluations from distinct annota-
tors showed that different pyramids for the same
topic yield the same system rankings, even though
SCUs from different pyramids typically do not
align exactly (Passonneau, 2010).

The default size of a phrase that contributes to
an SCU is a simple clause, but if it is clear from the
context that a summary essentially expresses the
same content expressed in other reference sum-
maries, it is said to contribute to the same SCU,
and the annotator must select at least a few con-
tributing words. SCU weights reflect how many
of N reference summaries express the SCU con-
tent. As such, SCUs are constrained to have no
more than one contributor phrase from each refer-
ence summary. If a summary repeats the same in-
formation, the repetition will increment the count
of total SCUs within one summary, but cannot be a
distinct contributor. For example, the paraphrases
from RSUM4 shown in Figure 1 add two to the to-
tal SCU size of the summary, but can only be used
once to increment an SCU weight. Simple clauses
in an evaluation summary that do not match pyra-
mid SCUs add to the summary’s SCU count, but
have zero weight.

3 Related Work

Summarization is an important component of
strategy instruction in reading and writing
skills (Graham and Perin, 2007), but is used less
than it could be due to the demands of manual
grading and feedback. However, integration of
NLP with rubric-based assessment has received
increasing attention. Gerard et al. (2016) and Ger-
ard and Linn (2016) applied automated assessment
using rubrics to successfully identify students who
need the most help, and facilitate and meaning-
ful classroom interactions. Agejev and Šnajder
(2017) used ROUGE and BLEU to identify col-

https://github.com/serenayj/PyrEval
https://github.com/serenayj/PyrEval
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lege students’ L2 skills. Santamarı́a Lancho et al.
(2018) used G-Rubric, an LSA-based tool, to help
instructors grade short text answers to open-ended
questions. Passonneau et al. (2018) found a high
correlation of an automated pyramid with a man-
ual rubric on a small set of summaries; see last
paragraph of this section.

ROUGE is the most prevalent method to as-
sess automated summarization. In 39 long
papers on summarization in ACL conferences
from 2013 through 2018 (mostly abstractive),
87% used ROUGE-1, ROUGE-2 or other vari-
ants such as LCS (longest common subse-
quence). A few used POURPRE (question an-
swering) (Lin and Demner-Fushman, 2006), or
METEOR (MT) (Denkowski and Lavie, 2014)
to investigate scores based on weighted con-
tent or synonomy. POURPRE relies on string
matching against reference units called answer
facts, weighting matches by inverse document fre-
quency. METEOR aligns words between refer-
ence and candidate, and can use relaxed word
matching, such as WordNet synonymy. Despite its
dominant use in previous work, Graham (2015)
noted that the large range of ROUGE variants
causes inconvenience and instability in evaluating
performance. Graham’s results from testing the
192 variants on DUC2004 data suggest that the
ROUGE variants that correlate best with human
evaluations are not often used.

PyrEval differs from other automated pyra-
mid tools in its focus on accurately isolating and
weighting the distinct SCUs in the reference sum-
maries. Three previous semi-automated pyramid
tools used dynamic programming to score sum-
maries, given a manual pyramid (Harnly et al.,
2005; Passonneau et al., 2013, 2018). The first of
these used unigram overlap to compare summaries
to a pyramid. Absolute scores were much lower
than ground truth, but average system rankings
across multiple tasks were accurate. A subsequent
extension that used cosine similarity of latent vec-
tor representations of ngrams and SCUs, based on
(Guo and Diab, 2012), had much better perfor-
mance (Passonneau et al., 2013). This was ex-
tended further through use of a weighted set cover
algorithm for scoring (Passonneau et al., 2018).
PEAK was the first fully automated approach to
construct a pyramid and score summaries (Yang
et al., 2016). It uses OpenIE to extract subject-
predicate-object triples from references, then con-

structs a hypergraph with triples as hyperedges.
Semantic similarity between nodes from distinct
hyperedges is measured using ADW’s random
walks over WordNet (Pilehvar et al., 2013), to as-
sign weights to triples. On a small set of sum-
maries used here in Table 1, PEAK raw scores had
a high correlation with a manual summary rubric.
PEAK was also tested on a single DUC 2006 topic,
where the input text was first manually altered.
Because PEAK is slow, Peyrard and Eckle-Kohler
(2017) reimplemented it’s use of the Hungarian al-
gorithm to optimize their summarizer. Because
PEAK produces many noisy copies of the same
SCU, its output cannot be used to justify scores
based on the unique matches or misses of a stu-
dent summary to SCUs. Its score normalizations
are inaccurate, and the un-normalized scores are
impractical for general-purpose evaluation.

4 PyrEval System

To construct a pyramid, humans identify contribu-
tor segments2 and group them into SCUs. Evalu-
ating a summary is a simpler process of matching
phrases to existing SCUs. PyrEval performs anal-
ogous steps, as shown in Figure 2. It first decom-
poses sentences of reference summaries (RSUM)
into segments (DECOMP PARSE) and converts
them into semantic vectors (LATENT SEM). It
then applies EDUA to group the segment vectors
into SCUs. EDUA (see below) is a novel restricted
set partition algorithm that maximizes the seman-
tic similarity within SCUs, subject to SCU con-
straints. Evaluation summaries (ESUM) are pre-
processed in a similar fashion to convert them to
segments represented as vectors. As in (Passon-
neau et al., 2018), PyrEval applies WMIN (Sakai
et al., 2003) to find the optimal set of matches with
pyramid SCUs. The remainder of this section de-
scribes each step.

4.1 Sentence Decomposition

The decomposition parser takes as input a phrase
structure parse and dependency parse for each sen-
tence, using Stanford CoreNLP (Manning et al.,
2014). Every tensed verb phrase (VP) from the
phrase structure parse initializes a new segment.
The head verbs of tensed VPs are aligned to the de-
pendency parse, and their dependent subjects are
then attached to the segments. Words other than

2These can be discontinuous substrings, and can reuse
words from other contributors, e.g., subjects of VP conjuncts.
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Figure 2: PyrEval preprocessors segment sentences
from reference (RSUM) and evaluation (ESUM) sum-
maries into clause-like units, then convert them to la-
tent vectors. EDUA constructs a pyramid from RSUM
vectors (lower left): the horizontal bands of the pyra-
mid represent SCUs of decreasing weight (shaded
squares). WMIN matches SCUs to ESUM segments
to produce a raw score, and three normalized scores.

Data (size) ELMo USE GloVe WTMF
WIM (20) 0.3873 -0.0290 0.7149 0.8525
TAC 09 (54) 0.0515 0.2672 0.1713 0.4961
STS-14 (3750) 0.1636 0.5757 0.6129 0.7257

Table 1: Comparison of phrase embedding methods on
correlation to manual pyramd (WIM, TAC09) or corre-
lation to human similarity judgements (STS-14).

those in the VP and subject are reinserted in their
original order. Every sentence has at least one de-
fault segmentation corresponding to the full sen-
tence, possibly with one or more alternative seg-
mentations of at least two segments each. It per-
forms well for most cases apart from sentences
with coordinate structures, which are notoriously
difficult for conventional parsers. Figure 3 illus-
trates a sentence segmentation, with three alterna-
tives.3

4.2 Semantic Vectors for Segments

The second PyrEval preprocessing step converts
segments to semantic vectors. We chose to avoid
semantic representation that requires training, to
make PyrEval a lightweight, standalone tool. Al-
though recent contextualized representations per-
form very well on a variety of NLP tasks, they are
typically intended as the basis for a transfer learn-
ing approach, or to initialize further task-specific

3Segmentation 1.6.2 is the one EDUA-G selects for the
pyramid.

Christopher Shake, the director of the London art gallery,
suggests that this is not the case and that many different com-
panies of different natures not just technology related are get-
ting involved with cryptocurrencies.

1.6.1.0 that this is not the case
1.6.1.1 Christopher Shake, the director of the London

art gallery, suggests and.
1.6.1.2 that many different companies of different

natures not just technology related are getting
involved with cryptocurrencies

1.6.2.0 Christopher Shake, the director of the London
art gallery, suggests that this is not the case and.

1.6.2.1 that many different companies of different
natures not just technology related are getting
involved with cryptocurrencies

1.6.3.0 Christopher Shake, the director of the London art
gallery, suggests and that many different
companies of different natures not just technology
related are getting involved with cryptocurrencies.

1.6.3.1 that this is not the case

Figure 3: Segmentation output for a sentence from a
reference summary for the “CryptoCurrencies” topic of
our student summaries.

neural training (e.g., (Pagliardini et al., 2018; Pe-
ters et al., 2018; Devlin et al., 2018; Vaswani et al.,
2017)). The most practical way to rely on com-
pletely pre-trained representations is to use word
embeddings along with a method to combine them
into phrase embeddings. Here we report on a com-
parison of ELMo (Peters et al., 2018) and the Uni-
versal Sentence Encoder for English (USE) (Cer
et al., 2018) with two conventional word embed-
ding methods, GloVe (Pennington et al., 2014) and
WTMF (Guo and Diab, 2012).4

ELMo is character-based rather than word-
based, relies on a many-layered bidirectional
LSTM, and incorporates word sequence (language
model) information. It was trained on billions
of tokens of Wikipedia and news text. To create
meaning vectors for strings of words, we use pre-
trained ELMo vectors, taking the weighted sum of
3 output layers as the word embeddings, then ap-
plying mean pooling.5 USE is intended for trans-
fer learning tasks, based on Transformer (Vaswani
et al., 2017) or the (Iyyer et al., 2015) deep aver-
aging network (DAN). We create meaning vectors
for word strings with the USE-DAN pretrained en-
coder.6 We use the GloVe download for 100D vec-

4We do not show results for Word2Vec (Mikolov et al.,
2013), where performance was similar to GloVe.

5We use ELMo module from https://github.
com/allenai/allennlp/.

6https://tfhub.dev/google/
universal-sentence-encoder/2.

https://github.com/allenai/allennlp/.
https://github.com/allenai/allennlp/.
https://tfhub.dev/google/universal-sentence-encoder/2
https://tfhub.dev/google/universal-sentence-encoder/2
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Figure 4: Part of an EDUA solution graph. Each vertex
is a segment vector from a reference summary, indexed
by Summary.ID (si), Sentence.ID (sij), Segmentation.ID
(sijk), Segment.ID (sijkm). All segments of all reference
summaries have a corresponding node. All edges con-
nect segments from different summaries with similarity
≥ tedge. This schematic representation of a partial so-
lution contains three fully connected subgraphs with at-
traction edges (solid lines), each representing an SCU,
whose weight is the number of vertices (segments).

tors trained on the 840B Common Crawl.7 To
combine the GloVe word vectors into a phrase
vector, we use the weighted averaging method
from (Arora et al., 2016). WTMF is a matrix
factorization method. We use WTMF matrices
trained on the Guo and Diab (2012) corpus (393K
sentences, 81K vocabulary size) that consists of
WordNet, Wiktionary, and the Brown corpus.

We compare the four embedding methods on
three datasets. Because our goal is to select a
method that performs well on pyramid annota-
tion, the first two datasets are human and machine
summaries with manual pyramid annotations, with
correlation of the manual pyramid and PyrEval
scores as the metric. WIM (for What is Matter)
is a dataset of student summaries with pyramid
annotation from (Passonneau et al., 2018) with
20 student summaries on one topic. Note that
PyrEval achieved a correlation of 0.85 on this data,
compared with 0.82 for PEAK (Passonneau et al.,
2018). We also use a subset of data from the NIST
TAC 2009 summarizer challenge. We use sum-
maries from all 54 peer systems on 14 of the 44
topics. We also use the STS-14 benchmark dataset
of semantic similarity judgements (3750 sentence
pairs), as in (Guo and Diab, 2012).

Table 1 shows WTMF to perform best on the

7https://nlp.stanford.edu/projects/
glove/.

1. Given a set of n reference summaries R, a preprocess-
ing function (described in subsections 4.1-4.2) SEG re-
turns segments as vectors: ∀Ri ∈ R, SEGS(Ri) =
{segijk1, segijk2, . . . , segijkm} where segijkm is the
mth segment of the kth segmentation of the jth sen-
tence in the ith summary.

2. A graph G is constructed from SEGS(Ri), where
an edge connects segments segijkm, segi′j′k′m′

if (i 6= i′, segijkm 6= segi′j′k′m,
cosine(segijkm, segi′j′k′m) ≥ tedge). Every
fully connected subgraph (clique) is a candidate scu
whose size is the number of nodes, which has a
maximum of n.

3. The attraction score of an scuz,AS(scuz) =
1

(|scu
z|

2 )

∑
segijkm,segi′j′k′m∈scuz ,segijkm 6=segi′j′k′m′

cosine(segijkm, segi′j′k′m′) if z > 1, else = 1.

4. A candidate pyramid P is a set of equivalence classes
SCUx that is a covering of all sentences in R (mean-
ing only one segmentation per sentence belongs to
any P ), ∀ x ∈ [1, n] : (∃ SCUx ∈ P ) →
(x ∈ [1, n],∀scuz ∈ SCUx, x = z). An
SCUx has an attraction class score AC(SCUx) =

1
|SCUx|

∑
scuz∈SCUx AS(SCUz).

5. Finally, a pyramid P has an attraction scoreAP(P ) =∑
SCUx∈P AS(SCU

x).

6. The optimal pyramid(R) = P that maximizes AP .

Figure 5: Formal specification of EDUA’s input graph
G consisting of all segments from all segmentations
of reference summary sentences (item 2), the objec-
tive (item 6), and three scores for defining the objective
function that are assigned to candidate SCUs (item 3),
sets of SCUs of the same weight (item 4), and a candi-
date pyramid (item 5).

three tasks by a large margin. We speculate this
results from two factors. The lower dimension-
ality of WTMF vectors compared to ELMo or
USE-DAN leads to higher maximum cosine val-
ues, thus better contrast between similar and dis-
similar pairs. WTMF differs from similar matrix
reduction methods in assigning a small weight to
non-context words, which improves robustness for
short phrases (fewer context words) Guo and Diab
(2012). The authors also claimed that a train-
ing corpus largely consisting of definitional state-
ments leads to co-occurrence data that is less noisy
than sentences found in the wild.

4.3 EDUA

EDUA (Emergent Discovery of Units of Attrac-
tion) is a restricted set partition algorithm. It con-
structs an optimal pyramid to achieve the high-
est attraction (semantic similarity of segments) in
all SCUs. Figure 4 schematically represents the
input graph to EDUA (see also item 1 in Fig-

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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ure 5), whose nodes consist of the segment vec-
tors described in the preceding section, and whose
edges connect segments from different summaries
whose cosine similarity ≥ tedge.8 A candidate
SCU is a fully connected subgraph (clique; item 2
in Figure 5). Every candidate SCU has an attrac-
tion score AS equal to the average of the edge
scores (item 3 in Figure 5). A candidate pyra-
mid is a set of SCUs that constitute a covering
of all the sentences in the input reference sum-
maries, with all segments for a given sentence
coming from only one of its segmentations. The
SCU weights for a pyramid, which are in [1, n] for
n reference summaries, form a partition over its
segments, and each equivalence class (all SCUs of
the same weight) has a score AC that is the aver-
age of its SCU scores (item 4 in Figure 5). The
score for a candidate pyramid AP is the sum of
itsAC scores (item 5 in Figure 5). We use the sum
rather than the average forAP to favor the equiva-
lence classes for higher weight SCUs. The optimal
pyramid maximizes AP (item 6 in Figure 5).

EDUA has two implementations. EDUA-C im-
plements a complete solution based on depth first
search (DFS) of candidate SCUs that guarantees
the global optimum (max AP). EDUA-G is a
greedy approximation.9

4.4 EDUA-C

EDUA-C constructs an adjacency list that for each
clique (candidate SCU) in the input graph, identi-
fies all the other SCUs that satisfy two constraints:
1) for any given sentence, all SCUs reference the
same segmentation; 2) all segments in all SCUs
are distinct. DFS search proceeds through the ad-
jacency list, ordering the SCUs by weight, until a
path is found through all SCUs that meets the con-
straints. The solution has the highestAP , or in the
case of ties, the path found first.

Figure 6 illustrates a toy EDUA-C DFS tree.
Each node depicts a candidate SCU clique, la-
belled by the number of nodes in the clique (SCU
weight). No child node has a higher weight than
its parent nodes. A child node is added to a search
path (solid nodes) if it violates no constraints.
Each of the six paths in the figure would receive
an AP score. After DFS finds all legal paths, the
one with highest AP is selected as the solution.

8The value of tedge is automatically set to the 83rd per-
centile of all pairwise cosine similarities in the input data.

9 See Appendix A for EDUA-G.

Figure 6: A directed Depth First Search tree for EDUA-
C. Nodes are cliques representing candidate SCUs, as
illustrated in Figure 4, labeled by their weights. Each
DFS path is a partition over one way to segment all
the input summaries and group all segments into SCUs.
The solution is the path with the highest AP .

4.5 Comparison of EDUA variants

Table 2 compares the distribution of SCUs by
weight of the two EDUA variants with manual
pyramids on the student summary dataset dis-
cussed in the next section. EDUA-C produces
a more skewed distribution than EDUA-G. Both
variants suffer from the coarse-grained segmen-
tation output from the decomposition parser, but
EDUA-G compensates by enforcing the Zipfian
distribution observed in most pyramids (see ap-
pendix A for details).

To evaluate speed, we tested both variants on
datasets with different numbers and lengths of
reference summaries. TAC 2010 reference sum-
maries (4 per topic) have on average 46 segments
each, and 321 candidate SCUs. Pyramid construc-
tion for TAC 2010 takes less than 10 seconds with
either variant on an Ubuntu machine with 4 In-
tel i5-6600 CPUs. EDUA-G’s greater efficiency
is more apparent for larger input. DUC 2005 has
seven reference summaries per topic, and longer
summaries than in TAC 2010; on five, EDUA-C
takes 211 seconds, while EDUA-G is still only
about ten seconds; on six, EDUA-C takes 20 min-
utes, compared to 5 minutes for EDUA-G.

Topic Variant All w=5 w=4 w=3 w ≤ 2

CC
Manual 34 0 3 5 26

G 31 1 2 4 24
C 39 1 1 1 36

AV
Manual 41 0 6 2 33

G 29 0 1 4 24
C 35 1 1 1 32

Table 2: Comparison of distributions of SCUs by
weight from pyramids produced manually, by two
EDUA variants (G and C), for the two topics CC and
AV.
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4.6 WMIN Scoring

For automatic matching of phrases in evaluation
summaries to SCUs in a manual pyramid, Pas-
sonneau et al. (2018) found good performance
with WMIN (Sakai et al., 2003), a greedy max-
imum weighted independent set algorithm. Be-
cause EDUA pyramids are analogous to manual
pyramids, PyrEval also uses WMIN. The input
to WMIN is a graph where each node is a tuple
of a segmentation of an ESUM sentence with the
sets of SCUs that give the highest average cosine
similarity for that sentence. The node weight is
the sum of SCU weights. Graph edges enforce
constraints that only one segmentation for a sen-
tence can be selected, and each pyramid SCU can
be matched to an ESUM sentence at most once.
WMIN selects the nodes that result in the maxi-
mum sum of SCU weights for the ESUM.

Score computation is a function of the matched
SCUs, as illustrated by the ESUM in the lower
right of Figure 2. This ESUM has five SCUS: two
of weight 5, one of weight 4, one of weight 2, and
one that does not match the pyramid (zero weight).
The sum of SCU weights is 16. The original pyra-
mid score, a precision analog, normalizes the raw
sum by the maximum sum for the same SCU count
given by the pyramid – (3×5)+(2×4) – indicat-
ing the degree to which the summary SCUs are as
high weighted as possible. Following (Passonneau
et al., 2018), we use the term quality score. The
average number of SCUs in the reference sum-
maries is 15, whose maximum weight from this
pyramid is 53. Normalizing the raw sum by 53
gives a coverage score of 0.30 (a recall analog).
The harmonic mean of these scores gives an F
score analog referred to as a comprehensive score.

5 Student Summaries

As part of a collaboration with a researcher in edu-
cational technology, we collected a new data set of
student summaries that were assigned in fall 2018
to computer science freshman in a university in
the United Kingdom (Gao et al., 2019). Our im-
mediate goal is to see how PyrEval could support
instructors who assign summaries by providing
an automated assessment that could be later cor-
rected, but which provides scores and score justi-
fications. PyrEval scores correlate well with man-
ual pyramid scores on content, and the log output
it produces provides a clear trace of score compu-
tation (see below).

Topic Variant Raw/Cov. Qual. Comp. R2

AV EDUAG 0.66 0.48 0.56 0.61EDUAC 0.55 0.50 0.53

CC EDUAG 0.72 0.63 0.69 0.66EDUAC 0.55 0.48 0.51

Table 3: Pearson correlation of manual pyramid and
PyrEval on four scores (raw/coverage, quality and com-
prehensive) compared with ROUGE-2 on coverage.

The class was an academic skills class that in-
cluded instruction in academic reading and writ-
ing. For one assignment, they were instructed to
select one of two current technology topics (three
readings per topic), then to summarize it in 150
to 250 to words. The two topics are shown below,
with the number of student summaries per reading,
and average number of words.

1. Autonomous Vehicles (AV): 42 summaries,
average words = 237.76

2. Cryptocurrency (CC): 37 summaries, average
words = 245.84

To write reference summaries for both topics, the
instructor recruited advanced students who had
done well in her academic skills class in previous
years. Three trained annotators applied manual
pyramid annotation to the student summaries. As
noted in section 2, pyramid annotation is highly re-
liable. Annotations of the student summaries were
performed in two passes by different annotators.

Table 3 reports the correlation between the man-
ual pyramid scores and the PyrEval scores on the
two sets of student summaries. For both AV and
CC, EDUA-G performs better than EDUA-C and
ROUGE-2, the best ROUGE variant on TAC10
(see below), and ROUGE-2 performs better than
EDUA-C. We attribute the lower correlations on
the quality score, and the lower performance on
this dataset compared to WIM (see Table 1), to the
greater challenges of the new dataset. WIM stu-
dents read a single, middle school text, and aver-
age summmary length was 109.02 words. For the
new dataset, students read three advanced texts,
and produced summaries that were over twice the
length (see above). Error analysis shows complex
sentence structure for the AV and CC data, with
many constructions such as conjunctions and lists,
that the decomposition parser cannot handle. As
noted above, EDUA-G compensates due to a Zip-
fian constraint on the pyramid shape.

Figure 1 compares a PyrEval SCU with a
manual one for the cryptocurrency topic, and
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Single PyrEval SCU (W=3) about the relation of “car accidents” to “insurance cost”
RSUM1 Also, as most collisions are due to human error, costs of insurance for self driving cars could fall

by up to <NUM>.
RSUM2 The cars themselves would also reduce insurance premiums; <NUM> percent of road accidents are

caused by human error
RSUM3 Shankleman does well to balance out the positives such as lower insurance , reduced traffic , savings on

mechanical costs and lower chance of road accidents .

Single manual SCU (W=4) on “high car accidents” Single manual SCU (W=4) on “lower insurance”
RSUM1 Also, as most collisions are due to human costs of insurance for self-driving cars could fall by

error up to 50%
RSUM2 90 percent of road accidents are caused by human The cars themselves would also reduce insurance

error premiums
RSUM3 . . . lower chance of road accidents . . . . . . lower insurance . . .
RSUM4 . . . he claims that over 90 percent of road traffic this would result in lower insurance premium for

accidents occur as a result of human error owners of autonomous vehicles by up to 50 percent.

Student IDs Segments correctly matching this PyrEval SCU to students’ summaries (from PyrEval log output)
A The insurance industry is also going to experience great changes as the director insurer of AXA

SA explains that more than <NUM> percent of road accidents are caused by human error.
B as <NUM> of the accidents are caused by human errors, also reducing the number of human

drivers will contribute to cheap insurance premiums and efficient transport
C Shankleman explains how problems with modern day transport such as high crash statistics and

extortionate insurance costs will be eradicated with such computing capabilities.

Figure 7: Alignment of an PyrEval SCU of weight 3 to segments from student summaries on autonomous vehicle.

also illustrates issues that might explain the rela-
tively poorer performance of ROUGE. We show a
phrase that both the manual annotator and PyrEval
matched to the SCU from one of the student sum-
maries, where the student used near synonyms
for terms in the articles and reference summaries:
craftmanship exhibition for art gallery, and inn for
hotel. ROUGE cannot match synonyms, and does
not distinguish differences in content importance.

Figure 7 shows an excerpt from PyrEval’s log
output on autonomous vehicle to illustrate the
alignment of an SCU to three student summaries
and comparison to two manual SCUs.10 The
PyrEval SCU captures a causal relation between
“car accidents due to human error” and “lower in-
surance costs.” The two manual SCUs, however,
show that the human annotators split this content
into two SCUs, because the content is expressed
in distinct clauses in RSUM1 and RSUM2. The
same content is supported by the implicit con-
texts for the shorter RSUM3 contributing phrases.
The RSUM4 contributor in the manual SCU about
“lower insurance” illustrates another issue that
PyrEval preprocessing cannot handle: resolution
of the deictic pronoun subject in ”this would re-
sult . . . ”.

10 Preprocessing replaces numeric character strings with
tags.

6 TAC 2010 Summaries

NIST summarization challenges dealt exclusively
with news, which is also the most prevalent genre
for automated summarizers in our survey of 2013-
2018 ACL publications (23/39 summarizers; see
above). To evaluate ROUGE, NIST used two
human gold standards in yearly challenges from
2005 through 2011, one of which was manual
pyramid. Annotation was performed by volunteers
among the challenge participants, using guidelines
developed for DUC 2006.11 In this section, we
apply a method NIST helped develop to evaluate
ROUGE against manual pyramid in an evaluation
of PyrEval against manual pyramid. We selected
TAC 2010 because summarizer performance was
less good in the earlier years.

TAC 2010 had two 100-word summarization
tasks on 10 documents for 46 topics. Task A sum-
marization was guided by a query. Task B was
an update to A, based on additional input. On in-
spection of the 92 pyramids (46 each for Tasks
A and B), we found that roughly 27% had poor
quality pyramids that did not follow the guidelines
mentioned above. We assembled a team of five
people familiar with manual pyramid to manually
redo the twelve pyramids that were independently
identified as the lowest quality.12

Tests of the correlation of human scores as-
11http://www1.cs.columbia.edu/˜becky/

DUC2006/2006-pyramid-guidelines.html;
we followed these guidelines for annotating the student

http://www1.cs.columbia.edu/~becky/DUC2006/2006-pyramid-guidelines.html
http://www1.cs.columbia.edu/~becky/DUC2006/2006-pyramid-guidelines.html
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System Task A Task B
Mean Acc. (sdev) 95% CI Acc. on 46 (delta) Mean Acc. (sdev) 95% CI Acc. on 46

R1 0.70 (0.04) (0.69, 0.71) 0.73 (0.03) 0.61 (0.04) (0.60, 0.62) 0.69 (0.08)
R2 0.72 (0.03) (0.72, 0.73) 0.80 (0.08) 0.70 (0.05) (0.69, 0.71) 0.78 (0.08)
EDUA-C 0.57 (0.04) (0.57, 0.58) 0.65 (0.08) 0.56 (0.05) (0.55, 0.57) 0.62 (0.06)
EDUA-G 0.57 (0.03) (0.56, 0.57) 0.60 (0.04) 0.60 (0.03) (0.59, 0.60) 0.63 (0.04)

Table 4: Mean accuracy, standard deviation and 95% confidence intervals on TAC 2010 Wilcoxon results for
ROUGE-1, ROUGE-2 and PyrEval, using 100 bootstrapped samples of 41 of the 46 topics.

signed to automated summaries with ROUGE (and
other automated metrics) were found to be unreli-
able, because of high score variance resulting as
much from properties of the input texts as from
differences in summarization systems (Nenkova,
2005; Nenkova and Louis, 2008). Analyses of
over a decade of NIST data from automated sum-
marizers that evaluate ROUGE against manual
pyramid and another manual score led to a solution
to this problem (Rankel et al., 2013; Owczarzak
et al., 2012a,b; Rankel et al., 2011). The solu-
tion is to use Wilcoxon signed rank tests, so that
pairs of systems are compared on matched input
in a way that tests for statistical significance. The
outcome is either that one of the systems is signif-
icantly better than the other, or that the difference
between them is not statistically significant. To
determine if the automated metric accurately re-
flects the gold standard scores, the same Wilcoxon
tests are performed using the manually assigned
scores on all pairs of systems, matching each pair
on the same inputs. A given automated metric is
then compared to the human gold standard to de-
termine how accurately the automated metric leads
to the same set of significant differences between
all pairs of systems.

Table 4 presents bootstrapped accuracy results
for ROUGE and PyrEval using 41 topics per boot-
strap sample, along with absolute accuracy on all
46 topics. Each selection of 41 topics gives a gold
standard set of system differences against which to
compare a given metric. ROUGE 2 has the highest
average accuracy on both Task A and B. ROUGE
1 performs nearly as well on Task A. PyrEval per-
forms less well on average accuracy for all tasks,
but similarly to ROUGE 1 in Task B. ROUGE-2
has greater sensitivity to topics, as shown by the
higher deltas between the bootstrapped accuracy
on 41 topics versus the accuracy on all 46. The
differences in Table 4 between the bootstrapped

summaries.
12We plan to ask NIST if we can make this data available

through them.

averages across 41 topics, and the accuracy scores
on all 46 topics, confirms the sensitivity of eval-
uation results to topics noted in (Nenkova, 2005;
Nenkova and Louis, 2008).

7 Conclusion

PyrEval outperforms previous automated pyramid
methods in accuracy, efficiency, score normaliza-
tion, and interpretability. It correlates with man-
ual pyramid better than ROUGE on a new dataset
of student summaries, and produces output that
helps justify the scores (similar to the examples
for Figures 1 and 7). While it does not perform
as well as ROUGE on extractive summarization,
we speculate it would outperform ROUGE on ab-
stractive summarizers. It relies on EDUA, a novel
restricted set partition algorithm, that expects se-
mantic vectors of sentence segments as input. The
current rule-based method that identifies sentence
substrings (the decomposition parser) is limited
by the output of the constituency and dependency
parsers it relies on. We are currently working on
a neural architecture that simultaneously identi-
fies simple clauses and produces semantic repre-
sentations that could provide better input for both
EDUA and WMIN, and thus improve PyrEval.

8 Acknowledgements

This work was supported in part by a Fellow-
ship from Teaching and Learning with Technol-
ogy, Penn State University, and by NSF award IIS-
1847842. We thank two Penn State undergrad-
uate research assistants for their contributions to
the code base: Andrew Warner, and Purushartha
Singh. Brent Hoffert, who recently graduated
from Penn State, developed the wrapper that sim-
plifies the use of PyrEval. Several additional Penn
State undergrads helped correct the TAC 10 pyra-
mids: Brent Hoffert, Alex Driban, Sahil Mishra,
Xuannan Su, and Kun Wang. Finally, we thank
the reviewers for their helpful suggestions.



413

References
Tamara Sladoljev Agejev and Jan Šnajder. 2017. Using
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A EDUA-G

EDUA-G (Greedy) is a greedy approximation to
EDUA-C with a backtracking algorithm adjusting
the allocation of candidate SCUs, and enforcing
the constraints. In this appendix, we use the same
notation as in section 4.3. Instead of finding the
solution globally with maximum AP across all
possible pyramids, EDUA-G works on achieving
the maximum AS for each set of SCUs of a given
size locally, starting with the set Cn with highest
weight (number of nodes per subgraph c), then the
rest in descending order. In addition to the con-
straints 1 and 2 in EDUA-C (mentioned in sec-
tion 4.4), EDUA-G has a capacity constraint for
each set Cr during search, limiting the number of
SCUs committed to the class. This constraint is
determined by the length of all the reference sum-
maries and exploits an empirical observation of
pyramids: that SCUs have a Zipfian distribution
of frequency across reference summaries: a few
have the highest weight, and for each lower weight
there are more in number, with a very long tail of
SCUs of weight 1.

To enforce the capacity constraint during
search, we define the maximum number of SCUs
yn of each equivalence class Cn as:

yn = α

(
1

n

)β
(1)

where n is the index of the equivalence class, α is
a constant related to the total number of segments
from all reference summaries, and β is a scaling
parameter (Clauset et al., 2009). Thus in addition
to tedge, EDUA-G has the hyperparameters α and
β. The capacities of the equivalence classes are
monotone increasing as n decreases:

|Cn| ≤ |Cn−1| (2)

Summing over |Cn| gives the size of the pyramid:

N∑
i

|Cn| ≤
N∑
i

yi (3)

Algorithm 1 presents EDUA-G.

Initialization Similar to EDUA-C, a segment
pool SP = SEGS(R1) ∪ . . . ∪ SEGS(Rn) is
first constructed from all the reference summaries
to store segments and two status flags. The pool
is accessible globally. For every segment segijkm,
two status flags are set:

Algorithm 1: EDUA-G
Data: Number of reference summaries n; a list CU of

candidate SCUs ordered by weight r where
1 ≤ r ≤ n, then by attraction score AS(CUr);
capacity of each equivalence class y1 . . .yn by
formula 1; a segment pool SP , residuals L1

Result: Pyramid P with equivalence classes C1 . . . Cn

1 Initialize r = n,
2 Cr = ∅, P = ∅, Dr as empty stack,
3 while (r > 1) ∧ (|Cr| ≤ yr) do
4 push all candidate CUr selected from CU into Dr

sorted by attraction score in ascending order ;
5 while Dr is not empty do
6 pop e from Dr with maximum AS;
7 if notConflict(Cr, e), and ∀ segijkm ∈ e

segijkm.commit == True or
segijkm.commit == NotV alid, and
segijkm.used == False then

8 Commit(Cr, e, SP ) ;
9 end

10 end
11 if P fails to meet any of the constraints then
12 BackTrack(Cr, yr, Cr+1, P, SP )
13 else
14 P ← P ∪ Cr;
15 end
16 r ← r − 1;
17 Initialize new stack Dr and repeat line 3
18 end
19 foreach segsijkm ∈ L1 do
20 if segsijkm.commit == True or

segsijkm.commit == NotV alid then
21 C1 ← C1 ∪ segsijkm;
22 segsijk∗.commit = True in SP ;
23 end
24 end
25 P ← P ∪ C1

1. segmentation status, denoted as
segijkm.commit: for all seg ∈ SP ,
seg.commitwill be initialized asNotV alid;
during EDUA-G, if a sentence is first used
by a segmentation segijk, all segments
segijk∗.commit are set to True, and all other
segijk′∗ from this sentence segij are set to as
False

2. segment status, denoted as segijkm.used:
when initialized, segijkm.used is set to False;
if segment segijkm is used in an SCU, the sta-
tus segijkm.used is set to True

A graph G is constructed from all segments. A
list of candidate SCUs (fully connected subgraph)
with weights r from n to 2 is exhaustively ex-
tracted from G. All the leftover segments with
weight as 1 are stored as residuals denote as L1,
at default sorted by the index.

Allocation The allocation process proceeds top-
down, iterating over descending values of r from
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Algorithm 2: BackTrack
Input: Current set Cr that fails constraints, its size

constraint yr , equivalence class Cr+1, current
result P , segment pool SP

Result: Adjusted pyramid P with equivalence classes
C1 . . . Cn

1 Initialize lr+1←Cr+1, lr = ∅ ;
2 while |Cr| ≤ yr do
3 Sort lr + 1 by AS in ascending order;
4 pop e′ from lr + 1 ;
5 decompose e′ into CUr where

CUr = {CUr1, . . . , CUr(r+1
r )} ;

6 lr ← lr ∪ CUr ;
7 foreach e ∈ lr do
8 if notConflict(Cr, e), ∀ segijkm ∈ e

segijkm.commit == True or
segijkm.commit == NotV alid, and
segijkm.used == False then

9 Commit(Cr, e, SP ) ;
10 end
11 end
12 Update P with new Cr;
13 Update Cr+1 by removing all CUr+1s that have

overlapping segments with SCUs in Cr ;
14 Update P with new Cr+1, reset segment and

segmentation status in SP ;
15 if P fails to meet any of the constraints then
16 BackTrack(Cr+1, yr+1,Cr+1+1,P , SP )
17 end
18 Break ;
19 end
20

Algorithm 3: notConflict
Input: current set Cr , a candidate SCU e,

1 foreach segment segijkm ∈ e do
2 if ∃ c ∈ Cr where segijkm ∈ c then
3 return False
4 end
5 end
6 return True

n to 2. All candidate SCUs are ordered first by
weight, then by descending AS. Each set Cr is
filled with all candidate SCUs of size r, where
maximum AS(SCU r) is selected greedily, until
the capacity constraint is satisfied. Every SCU
committed to Cr requires the segment status to
be checked and updated. Then the residual seg-
ments are allocated to C1 as in EDUA-C if the sta-
tus of the segments permits. For 1 < r < n, if
the provisional pyramid violates any constraints,
backtracking considers a provisional revision of
Cr+1 based on reallocating all the segments in
each subset of Cr+1 of size q, for q from 1 to the
size of Cr+1, considering reallocations in order of
descending values of AP . The algorithm termi-
nates when all the constraints are satisfied, no seg-
ments remain whose segmentation status is True

Algorithm 4: Commit
Input: current set Cr , a candidate SCU e, segment pool

SP
1 Cr ← Cr ∪ e ;
2 foreach segijkm ∈ e do
3 Set segijkm.used = True in SP ;
4 Set segijkm.commit = True in SP ;
5 end

and whose segment status is False.

Backtracking The backtracking algorithm pro-
ceeds bottom-up, from the current set Cr to Cn.
Recall from section 4.3, every pair of segments in
an SCU has an edge ≥ tedge; therefore an SCU
with r + 1 contributors can be decomposed into(
r+1
r

)
SCUs with r contributors. We utilize this

property to ensure every set Cr satisfies the con-
straints. During the emergent search and alloca-
tion of SCUs, if a set Cr does not meet the ca-
pacity constraint, the backtracking process will
be initiated for re-allocation by re-using the seg-
ments committed to SCUs in Cr+1, to compose
new SCUs in Cr. As shown in Algorithm 2, while
the allocation process selects SCUs with maxi-
mum attraction scores greedily, the backtracking
takes a conservative approach of re-doing the com-
mit decision by decomposing one SCU at a time
in Cr+1 with the least AS(SCU r), and compos-
ing new SCUs with weight r for Cr. It proceeds
recursively from r to n until the resulting P satis-
fies the constraints. This is because every SCU in
Cr+1 has higher importance than in Cr, and this
minimizes the impact of the re-allocation step on
AP . The backtracking algorithm terminates after
all the constraints are satisfied.

B Grid Search on Hyperparameters

Grid search was used to tune the EDUA-G hyper-
parameters. On DUC 2005 data, we used α in the
range [|seg|+10,|seg|+50] where |seg| is the num-
ber of input segments, and β ∈ [1, 3]. To set tedge,
we compute pairwise similarities of all segment
pairs from different summaries, and take tedge as
the value at percentile N , for N ∈ [60, 87]. The
performance metric was correlation with manual
pyramid on individual summarization tasks.

Table 5 of ANOVA on the hyperparameters
shows that β and tedge have strong impact, while
α does not (we select α = 10). A contour plot
of all combinations of β and tedge (Figure 8) gives
two regions of high correlation: β ∈ [2.5, 3], and
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Figure 8: Contour plot for score correlations with β
(X-axis) and tedge (Y-axis).

Parameters DF F-value P-value
α 4 0.31 0.872
β 4 104.31 0.000
tedge 11 6.56 0.000

Table 5: One-way ANOVA for hyperparameters, with
degrees of freedom (DF), F value and P-value (signifi-
cance level α=0.05, sample size N=300).

tedge ∈ [60, 70], or [80, 87]. Higher tedge yields
fewer edges in the graph, so for efficiency, we se-
lect β = 2.5, and N = 83. (Depending on the
dataset this corresponds to cosine similarities tedge
of about 0.15 to 0.35.)


