@inproceedings{huang-li-2019-unsupervised,
title = "Unsupervised Adversarial Domain Adaptation for Implicit Discourse Relation Classification",
author = "Huang, Hsin-Ping and
Li, Junyi Jessy",
editor = "Bansal, Mohit and
Villavicencio, Aline",
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K19-1064",
doi = "10.18653/v1/K19-1064",
pages = "686--695",
abstract = "Implicit discourse relations are not only more challenging to classify, but also to annotate, than their explicit counterparts. We tackle situations where training data for implicit relations are lacking, and exploit domain adaptation from explicit relations (Ji et al., 2015). We present an unsupervised adversarial domain adaptive network equipped with a reconstruction component. Our system outperforms prior works and other adversarial benchmarks for unsupervised domain adaptation. Additionally, we extend our system to take advantage of labeled data if some are available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-li-2019-unsupervised">
<titleInfo>
<title>Unsupervised Adversarial Domain Adaptation for Implicit Discourse Relation Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hsin-Ping</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="given">Jessy</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Implicit discourse relations are not only more challenging to classify, but also to annotate, than their explicit counterparts. We tackle situations where training data for implicit relations are lacking, and exploit domain adaptation from explicit relations (Ji et al., 2015). We present an unsupervised adversarial domain adaptive network equipped with a reconstruction component. Our system outperforms prior works and other adversarial benchmarks for unsupervised domain adaptation. Additionally, we extend our system to take advantage of labeled data if some are available.</abstract>
<identifier type="citekey">huang-li-2019-unsupervised</identifier>
<identifier type="doi">10.18653/v1/K19-1064</identifier>
<location>
<url>https://aclanthology.org/K19-1064</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>686</start>
<end>695</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Adversarial Domain Adaptation for Implicit Discourse Relation Classification
%A Huang, Hsin-Ping
%A Li, Junyi Jessy
%Y Bansal, Mohit
%Y Villavicencio, Aline
%S Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F huang-li-2019-unsupervised
%X Implicit discourse relations are not only more challenging to classify, but also to annotate, than their explicit counterparts. We tackle situations where training data for implicit relations are lacking, and exploit domain adaptation from explicit relations (Ji et al., 2015). We present an unsupervised adversarial domain adaptive network equipped with a reconstruction component. Our system outperforms prior works and other adversarial benchmarks for unsupervised domain adaptation. Additionally, we extend our system to take advantage of labeled data if some are available.
%R 10.18653/v1/K19-1064
%U https://aclanthology.org/K19-1064
%U https://doi.org/10.18653/v1/K19-1064
%P 686-695
Markdown (Informal)
[Unsupervised Adversarial Domain Adaptation for Implicit Discourse Relation Classification](https://aclanthology.org/K19-1064) (Huang & Li, CoNLL 2019)
ACL