@inproceedings{huang-etal-2019-relation,
title = "Relation Module for Non-Answerable Predictions on Reading Comprehension",
author = "Huang, Kevin and
Tang, Yun and
Huang, Jing and
He, Xiaodong and
Zhou, Bowen",
editor = "Bansal, Mohit and
Villavicencio, Aline",
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K19-1070",
doi = "10.18653/v1/K19-1070",
pages = "747--756",
abstract = "Machine reading comprehension (MRC) has attracted significant amounts of research attention recently, due to an increase of challenging reading comprehension datasets. In this paper, we aim to improve a MRC model{'}s ability to determine whether a question has an answer in a given context (e.g. the recently proposed SQuAD 2.0 task). The relation module consists of both semantic extraction and relational information. We first extract high level semantics as objects from both question and context with multi-head self-attentive pooling. These semantic objects are then passed to a relation network, which generates relationship scores for each object pair in a sentence. These scores are used to determine whether a question is non-answerable. We test the relation module on the SQuAD 2.0 dataset using both the BiDAF and BERT models as baseline readers. We obtain 1.8{\%} gain of F1 accuracy on top of the BiDAF reader, and 1.0{\%} on top of the BERT base model. These results show the effectiveness of our relation module on MRC.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2019-relation">
<titleInfo>
<title>Relation Module for Non-Answerable Predictions on Reading Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bowen</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Machine reading comprehension (MRC) has attracted significant amounts of research attention recently, due to an increase of challenging reading comprehension datasets. In this paper, we aim to improve a MRC model’s ability to determine whether a question has an answer in a given context (e.g. the recently proposed SQuAD 2.0 task). The relation module consists of both semantic extraction and relational information. We first extract high level semantics as objects from both question and context with multi-head self-attentive pooling. These semantic objects are then passed to a relation network, which generates relationship scores for each object pair in a sentence. These scores are used to determine whether a question is non-answerable. We test the relation module on the SQuAD 2.0 dataset using both the BiDAF and BERT models as baseline readers. We obtain 1.8% gain of F1 accuracy on top of the BiDAF reader, and 1.0% on top of the BERT base model. These results show the effectiveness of our relation module on MRC.</abstract>
<identifier type="citekey">huang-etal-2019-relation</identifier>
<identifier type="doi">10.18653/v1/K19-1070</identifier>
<location>
<url>https://aclanthology.org/K19-1070</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>747</start>
<end>756</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Relation Module for Non-Answerable Predictions on Reading Comprehension
%A Huang, Kevin
%A Tang, Yun
%A Huang, Jing
%A He, Xiaodong
%A Zhou, Bowen
%Y Bansal, Mohit
%Y Villavicencio, Aline
%S Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F huang-etal-2019-relation
%X Machine reading comprehension (MRC) has attracted significant amounts of research attention recently, due to an increase of challenging reading comprehension datasets. In this paper, we aim to improve a MRC model’s ability to determine whether a question has an answer in a given context (e.g. the recently proposed SQuAD 2.0 task). The relation module consists of both semantic extraction and relational information. We first extract high level semantics as objects from both question and context with multi-head self-attentive pooling. These semantic objects are then passed to a relation network, which generates relationship scores for each object pair in a sentence. These scores are used to determine whether a question is non-answerable. We test the relation module on the SQuAD 2.0 dataset using both the BiDAF and BERT models as baseline readers. We obtain 1.8% gain of F1 accuracy on top of the BiDAF reader, and 1.0% on top of the BERT base model. These results show the effectiveness of our relation module on MRC.
%R 10.18653/v1/K19-1070
%U https://aclanthology.org/K19-1070
%U https://doi.org/10.18653/v1/K19-1070
%P 747-756
Markdown (Informal)
[Relation Module for Non-Answerable Predictions on Reading Comprehension](https://aclanthology.org/K19-1070) (Huang et al., CoNLL 2019)
ACL