@inproceedings{li-etal-2019-sjtu,
    title = "{SJTU}-{NICT} at {MRP} 2019: Multi-Task Learning for End-to-End Uniform Semantic Graph Parsing",
    author = "Li, Zuchao  and
      Zhao, Hai  and
      Zhang, Zhuosheng  and
      Wang, Rui  and
      Utiyama, Masao  and
      Sumita, Eiichiro",
    editor = "Oepen, Stephan  and
      Abend, Omri  and
      Hajic, Jan  and
      Hershcovich, Daniel  and
      Kuhlmann, Marco  and
      O{'}Gorman, Tim  and
      Xue, Nianwen",
    booktitle = "Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning",
    month = nov,
    year = "2019",
    address = "Hong Kong",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/K19-2004/",
    doi = "10.18653/v1/K19-2004",
    pages = "45--54",
    abstract = "This paper describes our SJTU-NICT{'}s system for participating in the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2019 Conference for Computational Language Learning (CoNLL). Our system uses a graph-based approach to model a variety of semantic graph parsing tasks. Our main contributions in the submitted system are summarized as follows: 1. Our model is fully end-to-end and is capable of being trained only on the given training set which does not rely on any other extra training source including the companion data provided by the organizer; 2. We extend our graph pruning algorithm to a variety of semantic graphs, solving the problem of excessive semantic graph search space; 3. We introduce multi-task learning for multiple objectives within the same framework. The evaluation results show that our system achieved second place in the overall $F_1$ score and achieved the best $F_1$ score on the DM framework."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2019-sjtu">
    <titleInfo>
        <title>SJTU-NICT at MRP 2019: Multi-Task Learning for End-to-End Uniform Semantic Graph Parsing</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Zuchao</namePart>
        <namePart type="family">Li</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hai</namePart>
        <namePart type="family">Zhao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zhuosheng</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rui</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Masao</namePart>
        <namePart type="family">Utiyama</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Eiichiro</namePart>
        <namePart type="family">Sumita</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Stephan</namePart>
            <namePart type="family">Oepen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Omri</namePart>
            <namePart type="family">Abend</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jan</namePart>
            <namePart type="family">Hajic</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Daniel</namePart>
            <namePart type="family">Hershcovich</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marco</namePart>
            <namePart type="family">Kuhlmann</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Tim</namePart>
            <namePart type="family">O’Gorman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nianwen</namePart>
            <namePart type="family">Xue</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes our SJTU-NICT’s system for participating in the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2019 Conference for Computational Language Learning (CoNLL). Our system uses a graph-based approach to model a variety of semantic graph parsing tasks. Our main contributions in the submitted system are summarized as follows: 1. Our model is fully end-to-end and is capable of being trained only on the given training set which does not rely on any other extra training source including the companion data provided by the organizer; 2. We extend our graph pruning algorithm to a variety of semantic graphs, solving the problem of excessive semantic graph search space; 3. We introduce multi-task learning for multiple objectives within the same framework. The evaluation results show that our system achieved second place in the overall F₁ score and achieved the best F₁ score on the DM framework.</abstract>
    <identifier type="citekey">li-etal-2019-sjtu</identifier>
    <identifier type="doi">10.18653/v1/K19-2004</identifier>
    <location>
        <url>https://aclanthology.org/K19-2004/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>45</start>
            <end>54</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SJTU-NICT at MRP 2019: Multi-Task Learning for End-to-End Uniform Semantic Graph Parsing
%A Li, Zuchao
%A Zhao, Hai
%A Zhang, Zhuosheng
%A Wang, Rui
%A Utiyama, Masao
%A Sumita, Eiichiro
%Y Oepen, Stephan
%Y Abend, Omri
%Y Hajic, Jan
%Y Hershcovich, Daniel
%Y Kuhlmann, Marco
%Y O’Gorman, Tim
%Y Xue, Nianwen
%S Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F li-etal-2019-sjtu
%X This paper describes our SJTU-NICT’s system for participating in the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2019 Conference for Computational Language Learning (CoNLL). Our system uses a graph-based approach to model a variety of semantic graph parsing tasks. Our main contributions in the submitted system are summarized as follows: 1. Our model is fully end-to-end and is capable of being trained only on the given training set which does not rely on any other extra training source including the companion data provided by the organizer; 2. We extend our graph pruning algorithm to a variety of semantic graphs, solving the problem of excessive semantic graph search space; 3. We introduce multi-task learning for multiple objectives within the same framework. The evaluation results show that our system achieved second place in the overall F₁ score and achieved the best F₁ score on the DM framework.
%R 10.18653/v1/K19-2004
%U https://aclanthology.org/K19-2004/
%U https://doi.org/10.18653/v1/K19-2004
%P 45-54
Markdown (Informal)
[SJTU-NICT at MRP 2019: Multi-Task Learning for End-to-End Uniform Semantic Graph Parsing](https://aclanthology.org/K19-2004/) (Li et al., CoNLL 2019)
ACL