@inproceedings{na-etal-2019-jbnu,
title = "{JBNU} at {MRP} 2019: Multi-level Biaffine Attention for Semantic Dependency Parsing",
author = "Na, Seung-Hoon and
Min, Jinwoon and
Park, Kwanghyeon and
Shin, Jong-Hun and
Kim, Young-Kil",
editor = "Oepen, Stephan and
Abend, Omri and
Hajic, Jan and
Hershcovich, Daniel and
Kuhlmann, Marco and
O{'}Gorman, Tim and
Xue, Nianwen",
booktitle = "Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/K19-2009/",
doi = "10.18653/v1/K19-2009",
pages = "95--103",
abstract = "This paper describes Jeonbuk National University (JBNU)`s system for the 2019 shared task on Cross-Framework Meaning Representation Parsing (MRP 2019) at the Conference on Computational Natural Language Learning. Of the five frameworks, we address only the DELPH-IN MRS Bi-Lexical Dependencies (DP), Prague Semantic Dependencies (PSD), and Universal Conceptual Cognitive Annotation (UCCA) frameworks. We propose a unified parsing model using biaffine attention (Dozat and Manning, 2017), consisting of 1) a BERT-BiLSTM encoder and 2) a biaffine attention decoder. First, the BERT-BiLSTM for sentence encoder uses BERT to compose a sentence`s wordpieces into word-level embeddings and subsequently applies BiLSTM to word-level representations. Second, the biaffine attention decoder determines the scores for an edge`s existence and its labels based on biaffine attention functions between roledependent representations. We also present multi-level biaffine attention models by combining all the role-dependent representations that appear at multiple intermediate layers."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="na-etal-2019-jbnu">
<titleInfo>
<title>JBNU at MRP 2019: Multi-level Biaffine Attention for Semantic Dependency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinwoon</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kwanghyeon</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jong-Hun</namePart>
<namePart type="family">Shin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Young-Kil</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Oepen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omri</namePart>
<namePart type="family">Abend</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Hershcovich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Kuhlmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">O’Gorman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes Jeonbuk National University (JBNU)‘s system for the 2019 shared task on Cross-Framework Meaning Representation Parsing (MRP 2019) at the Conference on Computational Natural Language Learning. Of the five frameworks, we address only the DELPH-IN MRS Bi-Lexical Dependencies (DP), Prague Semantic Dependencies (PSD), and Universal Conceptual Cognitive Annotation (UCCA) frameworks. We propose a unified parsing model using biaffine attention (Dozat and Manning, 2017), consisting of 1) a BERT-BiLSTM encoder and 2) a biaffine attention decoder. First, the BERT-BiLSTM for sentence encoder uses BERT to compose a sentence‘s wordpieces into word-level embeddings and subsequently applies BiLSTM to word-level representations. Second, the biaffine attention decoder determines the scores for an edge‘s existence and its labels based on biaffine attention functions between roledependent representations. We also present multi-level biaffine attention models by combining all the role-dependent representations that appear at multiple intermediate layers.</abstract>
<identifier type="citekey">na-etal-2019-jbnu</identifier>
<identifier type="doi">10.18653/v1/K19-2009</identifier>
<location>
<url>https://aclanthology.org/K19-2009/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>95</start>
<end>103</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T JBNU at MRP 2019: Multi-level Biaffine Attention for Semantic Dependency Parsing
%A Na, Seung-Hoon
%A Min, Jinwoon
%A Park, Kwanghyeon
%A Shin, Jong-Hun
%A Kim, Young-Kil
%Y Oepen, Stephan
%Y Abend, Omri
%Y Hajic, Jan
%Y Hershcovich, Daniel
%Y Kuhlmann, Marco
%Y O’Gorman, Tim
%Y Xue, Nianwen
%S Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F na-etal-2019-jbnu
%X This paper describes Jeonbuk National University (JBNU)‘s system for the 2019 shared task on Cross-Framework Meaning Representation Parsing (MRP 2019) at the Conference on Computational Natural Language Learning. Of the five frameworks, we address only the DELPH-IN MRS Bi-Lexical Dependencies (DP), Prague Semantic Dependencies (PSD), and Universal Conceptual Cognitive Annotation (UCCA) frameworks. We propose a unified parsing model using biaffine attention (Dozat and Manning, 2017), consisting of 1) a BERT-BiLSTM encoder and 2) a biaffine attention decoder. First, the BERT-BiLSTM for sentence encoder uses BERT to compose a sentence‘s wordpieces into word-level embeddings and subsequently applies BiLSTM to word-level representations. Second, the biaffine attention decoder determines the scores for an edge‘s existence and its labels based on biaffine attention functions between roledependent representations. We also present multi-level biaffine attention models by combining all the role-dependent representations that appear at multiple intermediate layers.
%R 10.18653/v1/K19-2009
%U https://aclanthology.org/K19-2009/
%U https://doi.org/10.18653/v1/K19-2009
%P 95-103
Markdown (Informal)
[JBNU at MRP 2019: Multi-level Biaffine Attention for Semantic Dependency Parsing](https://aclanthology.org/K19-2009/) (Na et al., CoNLL 2019)
ACL