@inproceedings{lacatusu-etal-2004-multi,
title = "Multi-Document Summarization Using Multiple-Sequence Alignment",
author = "Lacatusu, V. Finley and
Maiorano, Steven J. and
Harabagiu, Sanda M.",
editor = "Lino, Maria Teresa and
Xavier, Maria Francisca and
Ferreira, F{\'a}tima and
Costa, Rute and
Silva, Raquel",
booktitle = "Proceedings of the Fourth International Conference on Language Resources and Evaluation ({LREC}{'}04)",
month = may,
year = "2004",
address = "Lisbon, Portugal",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2004/pdf/408.pdf",
abstract = "This paper describes a novel clustering-based text summarization system that uses Multiple Sequence Alignment to improve the alignment of sentences within topic clusters. While most current clustering-based summarization systems base their summaries only on the common information contained in a collection of highly-related sentences, our system constructs more informative summaries that incorporate both the redundant and unique contributions of the sentences in the cluster. When evaluated using ROUGE, the summaries produced by our system represent a substantial improvement over the baseline, which is at 63{\%} of the human performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lacatusu-etal-2004-multi">
<titleInfo>
<title>Multi-Document Summarization Using Multiple-Sequence Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="given">Finley</namePart>
<namePart type="family">Lacatusu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Maiorano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanda</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Harabagiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2004-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC’04)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Teresa</namePart>
<namePart type="family">Lino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Francisca</namePart>
<namePart type="family">Xavier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fátima</namePart>
<namePart type="family">Ferreira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rute</namePart>
<namePart type="family">Costa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raquel</namePart>
<namePart type="family">Silva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Lisbon, Portugal</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a novel clustering-based text summarization system that uses Multiple Sequence Alignment to improve the alignment of sentences within topic clusters. While most current clustering-based summarization systems base their summaries only on the common information contained in a collection of highly-related sentences, our system constructs more informative summaries that incorporate both the redundant and unique contributions of the sentences in the cluster. When evaluated using ROUGE, the summaries produced by our system represent a substantial improvement over the baseline, which is at 63% of the human performance.</abstract>
<identifier type="citekey">lacatusu-etal-2004-multi</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2004/pdf/408.pdf</url>
</location>
<part>
<date>2004-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Document Summarization Using Multiple-Sequence Alignment
%A Lacatusu, V. Finley
%A Maiorano, Steven J.
%A Harabagiu, Sanda M.
%Y Lino, Maria Teresa
%Y Xavier, Maria Francisca
%Y Ferreira, Fátima
%Y Costa, Rute
%Y Silva, Raquel
%S Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC’04)
%D 2004
%8 May
%I European Language Resources Association (ELRA)
%C Lisbon, Portugal
%F lacatusu-etal-2004-multi
%X This paper describes a novel clustering-based text summarization system that uses Multiple Sequence Alignment to improve the alignment of sentences within topic clusters. While most current clustering-based summarization systems base their summaries only on the common information contained in a collection of highly-related sentences, our system constructs more informative summaries that incorporate both the redundant and unique contributions of the sentences in the cluster. When evaluated using ROUGE, the summaries produced by our system represent a substantial improvement over the baseline, which is at 63% of the human performance.
%U http://www.lrec-conf.org/proceedings/lrec2004/pdf/408.pdf
Markdown (Informal)
[Multi-Document Summarization Using Multiple-Sequence Alignment](http://www.lrec-conf.org/proceedings/lrec2004/pdf/408.pdf) (Lacatusu et al., LREC 2004)
ACL