@inproceedings{maas-wrede-2006-bitt,
title = "{BITT}: A Corpus for Topic Tracking Evaluation on Multimodal Human-Robot-Interaction",
author = "Maas, Jan Frederik and
Wrede, Britta",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Gangemi, Aldo and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Tapias, Daniel",
booktitle = "Proceedings of the Fifth International Conference on Language Resources and Evaluation ({LREC}{'}06)",
month = may,
year = "2006",
address = "Genoa, Italy",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2006/pdf/96_pdf.pdf",
abstract = "Our research is concerned with the development of robotic systems which can support people in household environments, such as taking care of elderly people. A central goal of our research consists in creating robot systems which are able to learn and communicate about a given environment without the need of a specially trained user. For the communication with such users it is necessary that the robot is able to communicate multimodally, which especially includes the ability to communicate in natural language. Our research is concerned with the development of robotic systems which can support people in household environments, such as taking care of elderly people. A central goal of our research consists in creating robot systems which are able to learn and communicate about a given environment without the need of a specially trained user. For the communication with such users it is necessary that the robot is able to communicate multimodally, which especially includes the ability to communicate in natural language. We believe that the ability to communicate naturally in multimodal communication must be supported by the ability to access contextual information, with topical knowledge being an important aspect of this knowledge. Therefore, we currently develop a topic tracking system for situated human-robot communication on our robot systems. This paper describes the BITT (Bielefeld Topic Tracking) corpus which we built in order to develop and evaluate our system. The corpus consists of human-robot communication sequences about a home-like environment, delivering access to the information sources a multimodal topic tracking system requires.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maas-wrede-2006-bitt">
<titleInfo>
<title>BITT: A Corpus for Topic Tracking Evaluation on Multimodal Human-Robot-Interaction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="given">Frederik</namePart>
<namePart type="family">Maas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Britta</namePart>
<namePart type="family">Wrede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2006-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aldo</namePart>
<namePart type="family">Gangemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Genoa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Our research is concerned with the development of robotic systems which can support people in household environments, such as taking care of elderly people. A central goal of our research consists in creating robot systems which are able to learn and communicate about a given environment without the need of a specially trained user. For the communication with such users it is necessary that the robot is able to communicate multimodally, which especially includes the ability to communicate in natural language. Our research is concerned with the development of robotic systems which can support people in household environments, such as taking care of elderly people. A central goal of our research consists in creating robot systems which are able to learn and communicate about a given environment without the need of a specially trained user. For the communication with such users it is necessary that the robot is able to communicate multimodally, which especially includes the ability to communicate in natural language. We believe that the ability to communicate naturally in multimodal communication must be supported by the ability to access contextual information, with topical knowledge being an important aspect of this knowledge. Therefore, we currently develop a topic tracking system for situated human-robot communication on our robot systems. This paper describes the BITT (Bielefeld Topic Tracking) corpus which we built in order to develop and evaluate our system. The corpus consists of human-robot communication sequences about a home-like environment, delivering access to the information sources a multimodal topic tracking system requires.</abstract>
<identifier type="citekey">maas-wrede-2006-bitt</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2006/pdf/96_pdf.pdf</url>
</location>
<part>
<date>2006-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BITT: A Corpus for Topic Tracking Evaluation on Multimodal Human-Robot-Interaction
%A Maas, Jan Frederik
%A Wrede, Britta
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Gangemi, Aldo
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Tapias, Daniel
%S Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)
%D 2006
%8 May
%I European Language Resources Association (ELRA)
%C Genoa, Italy
%F maas-wrede-2006-bitt
%X Our research is concerned with the development of robotic systems which can support people in household environments, such as taking care of elderly people. A central goal of our research consists in creating robot systems which are able to learn and communicate about a given environment without the need of a specially trained user. For the communication with such users it is necessary that the robot is able to communicate multimodally, which especially includes the ability to communicate in natural language. Our research is concerned with the development of robotic systems which can support people in household environments, such as taking care of elderly people. A central goal of our research consists in creating robot systems which are able to learn and communicate about a given environment without the need of a specially trained user. For the communication with such users it is necessary that the robot is able to communicate multimodally, which especially includes the ability to communicate in natural language. We believe that the ability to communicate naturally in multimodal communication must be supported by the ability to access contextual information, with topical knowledge being an important aspect of this knowledge. Therefore, we currently develop a topic tracking system for situated human-robot communication on our robot systems. This paper describes the BITT (Bielefeld Topic Tracking) corpus which we built in order to develop and evaluate our system. The corpus consists of human-robot communication sequences about a home-like environment, delivering access to the information sources a multimodal topic tracking system requires.
%U http://www.lrec-conf.org/proceedings/lrec2006/pdf/96_pdf.pdf
Markdown (Informal)
[BITT: A Corpus for Topic Tracking Evaluation on Multimodal Human-Robot-Interaction](http://www.lrec-conf.org/proceedings/lrec2006/pdf/96_pdf.pdf) (Maas & Wrede, LREC 2006)
ACL