@inproceedings{denis-etal-2006-deep,
title = "A Deep-Parsing Approach to Natural Language Understanding in Dialogue System: Results of a Corpus-Based Evaluation",
author = "Denis, Alexandre and
Quignard, Matthieu and
Pitel, Guillaume",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Gangemi, Aldo and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Tapias, Daniel",
booktitle = "Proceedings of the Fifth International Conference on Language Resources and Evaluation ({LREC}{'}06)",
month = may,
year = "2006",
address = "Genoa, Italy",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2006/pdf/386_pdf.pdf",
abstract = "This paper presents an approach to dialogue understanding based on a deep parsing and rule-based semantic analysis. Its performance in the semantic evaluation performed in the framework of the EVALDA/MEDIA campaign is encouraging. The MEDIA project aims to evaluate natural language understanding systems for French on a hotel reservation task (Devillers et al., 2004). For the evaluation, five participating teams had to produce an annotated version of the input utterances in compliance with a commonly agreed format (the MEDIA formalism). An approach based on symbolic processing was not straightforward given the conditions of the evaluation but we achieved a score close to that of statistical systems, without needing an annotated corpus. Despite the architecture has been designed for this campaign, exclusively dedicated to spoken dialogue understanding, we believe that our approach based on a LTAG parser and two ontologies can be used in real dialogue systems, providing quite robust speech understanding and facilities for interfacing with a dialogue manager and the application itself.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="denis-etal-2006-deep">
<titleInfo>
<title>A Deep-Parsing Approach to Natural Language Understanding in Dialogue System: Results of a Corpus-Based Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Denis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthieu</namePart>
<namePart type="family">Quignard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guillaume</namePart>
<namePart type="family">Pitel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2006-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aldo</namePart>
<namePart type="family">Gangemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Genoa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents an approach to dialogue understanding based on a deep parsing and rule-based semantic analysis. Its performance in the semantic evaluation performed in the framework of the EVALDA/MEDIA campaign is encouraging. The MEDIA project aims to evaluate natural language understanding systems for French on a hotel reservation task (Devillers et al., 2004). For the evaluation, five participating teams had to produce an annotated version of the input utterances in compliance with a commonly agreed format (the MEDIA formalism). An approach based on symbolic processing was not straightforward given the conditions of the evaluation but we achieved a score close to that of statistical systems, without needing an annotated corpus. Despite the architecture has been designed for this campaign, exclusively dedicated to spoken dialogue understanding, we believe that our approach based on a LTAG parser and two ontologies can be used in real dialogue systems, providing quite robust speech understanding and facilities for interfacing with a dialogue manager and the application itself.</abstract>
<identifier type="citekey">denis-etal-2006-deep</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2006/pdf/386_pdf.pdf</url>
</location>
<part>
<date>2006-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Deep-Parsing Approach to Natural Language Understanding in Dialogue System: Results of a Corpus-Based Evaluation
%A Denis, Alexandre
%A Quignard, Matthieu
%A Pitel, Guillaume
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Gangemi, Aldo
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Tapias, Daniel
%S Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)
%D 2006
%8 May
%I European Language Resources Association (ELRA)
%C Genoa, Italy
%F denis-etal-2006-deep
%X This paper presents an approach to dialogue understanding based on a deep parsing and rule-based semantic analysis. Its performance in the semantic evaluation performed in the framework of the EVALDA/MEDIA campaign is encouraging. The MEDIA project aims to evaluate natural language understanding systems for French on a hotel reservation task (Devillers et al., 2004). For the evaluation, five participating teams had to produce an annotated version of the input utterances in compliance with a commonly agreed format (the MEDIA formalism). An approach based on symbolic processing was not straightforward given the conditions of the evaluation but we achieved a score close to that of statistical systems, without needing an annotated corpus. Despite the architecture has been designed for this campaign, exclusively dedicated to spoken dialogue understanding, we believe that our approach based on a LTAG parser and two ontologies can be used in real dialogue systems, providing quite robust speech understanding and facilities for interfacing with a dialogue manager and the application itself.
%U http://www.lrec-conf.org/proceedings/lrec2006/pdf/386_pdf.pdf
Markdown (Informal)
[A Deep-Parsing Approach to Natural Language Understanding in Dialogue System: Results of a Corpus-Based Evaluation](http://www.lrec-conf.org/proceedings/lrec2006/pdf/386_pdf.pdf) (Denis et al., LREC 2006)
ACL