@inproceedings{taboada-etal-2006-methods,
title = "Methods for Creating Semantic Orientation Dictionaries",
author = "Taboada, Maite and
Anthony, Caroline and
Voll, Kimberly",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Gangemi, Aldo and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Tapias, Daniel",
booktitle = "Proceedings of the Fifth International Conference on Language Resources and Evaluation ({LREC}`06)",
month = may,
year = "2006",
address = "Genoa, Italy",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L06-1250/",
abstract = "We describe and compare different methods for creating a dictionary of words with their corresponding semantic orientation (SO). We tested how well different dictionaries helped determine the SO of entire texts. To extract SO for each individual word, we used a common method based on pointwise mutual information. Mutual information between a set of seed words and the target words was calculated using two different methods: a NEAR search on the search engine Altavista (since discontinued); an AND search on Google. These two dictionaries were tested against a manually annotated dictionary of positive and negative words. The results show that all three methods are quite close, and none of them performs particularly well. We discuss possible further avenues for research, and also point out some potential problems in calculating pointwise mutual information using Google."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="taboada-etal-2006-methods">
<titleInfo>
<title>Methods for Creating Semantic Orientation Dictionaries</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Taboada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caroline</namePart>
<namePart type="family">Anthony</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kimberly</namePart>
<namePart type="family">Voll</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2006-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC‘06)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aldo</namePart>
<namePart type="family">Gangemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Genoa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe and compare different methods for creating a dictionary of words with their corresponding semantic orientation (SO). We tested how well different dictionaries helped determine the SO of entire texts. To extract SO for each individual word, we used a common method based on pointwise mutual information. Mutual information between a set of seed words and the target words was calculated using two different methods: a NEAR search on the search engine Altavista (since discontinued); an AND search on Google. These two dictionaries were tested against a manually annotated dictionary of positive and negative words. The results show that all three methods are quite close, and none of them performs particularly well. We discuss possible further avenues for research, and also point out some potential problems in calculating pointwise mutual information using Google.</abstract>
<identifier type="citekey">taboada-etal-2006-methods</identifier>
<location>
<url>https://aclanthology.org/L06-1250/</url>
</location>
<part>
<date>2006-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Methods for Creating Semantic Orientation Dictionaries
%A Taboada, Maite
%A Anthony, Caroline
%A Voll, Kimberly
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Gangemi, Aldo
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Tapias, Daniel
%S Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC‘06)
%D 2006
%8 May
%I European Language Resources Association (ELRA)
%C Genoa, Italy
%F taboada-etal-2006-methods
%X We describe and compare different methods for creating a dictionary of words with their corresponding semantic orientation (SO). We tested how well different dictionaries helped determine the SO of entire texts. To extract SO for each individual word, we used a common method based on pointwise mutual information. Mutual information between a set of seed words and the target words was calculated using two different methods: a NEAR search on the search engine Altavista (since discontinued); an AND search on Google. These two dictionaries were tested against a manually annotated dictionary of positive and negative words. The results show that all three methods are quite close, and none of them performs particularly well. We discuss possible further avenues for research, and also point out some potential problems in calculating pointwise mutual information using Google.
%U https://aclanthology.org/L06-1250/
Markdown (Informal)
[Methods for Creating Semantic Orientation Dictionaries](https://aclanthology.org/L06-1250/) (Taboada et al., LREC 2006)
ACL
- Maite Taboada, Caroline Anthony, and Kimberly Voll. 2006. Methods for Creating Semantic Orientation Dictionaries. In Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy. European Language Resources Association (ELRA).