@inproceedings{michailidis-etal-2006-greek,
title = "{G}reek Named Entity Recognition using Support Vector Machines, Maximum Entropy and Onetime",
author = "Michailidis, Ionas and
Diamantaras, Konstantinos and
Vasileiadis, Spiros and
Fr{\`e}re, Yannick",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Gangemi, Aldo and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Tapias, Daniel",
booktitle = "Proceedings of the Fifth International Conference on Language Resources and Evaluation ({LREC}{'}06)",
month = may,
year = "2006",
address = "Genoa, Italy",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2006/pdf/557_pdf.pdf",
abstract = "We describe our work on Greek Named Entity Recognition using comparatively three different machine learning techniques: (i) Support Vector Machines (SVM), (ii) Maximum Entropy and (iii) Onetime, a shortcut method based on previous work of one of the authors. The majority of our systems features use linguistic knowledge provided by: morphology, punctuation, position of the lexical units within a sentence and within a text, electronic dictionaries, and the outputs of external tools (a tokenizer, a sentence splitter, and a Hellenic version of Brills Part of Speech Tagger). After testing we observed that the application of a few simple Post Testing Classification Correction (PTCC) rules created after the observation of output errors, improved the results of the SVM and the Maximum Entropy systems output. We achieved very good results with the three methods. Our best configurations (Support Vector Machines with a second degree polynomial kernel and Maximum Entropy) achieved both after the application of PTCC rules an overall F-measure of 91.06.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="michailidis-etal-2006-greek">
<titleInfo>
<title>Greek Named Entity Recognition using Support Vector Machines, Maximum Entropy and Onetime</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ionas</namePart>
<namePart type="family">Michailidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Konstantinos</namePart>
<namePart type="family">Diamantaras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spiros</namePart>
<namePart type="family">Vasileiadis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yannick</namePart>
<namePart type="family">Frère</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2006-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aldo</namePart>
<namePart type="family">Gangemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Genoa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe our work on Greek Named Entity Recognition using comparatively three different machine learning techniques: (i) Support Vector Machines (SVM), (ii) Maximum Entropy and (iii) Onetime, a shortcut method based on previous work of one of the authors. The majority of our systems features use linguistic knowledge provided by: morphology, punctuation, position of the lexical units within a sentence and within a text, electronic dictionaries, and the outputs of external tools (a tokenizer, a sentence splitter, and a Hellenic version of Brills Part of Speech Tagger). After testing we observed that the application of a few simple Post Testing Classification Correction (PTCC) rules created after the observation of output errors, improved the results of the SVM and the Maximum Entropy systems output. We achieved very good results with the three methods. Our best configurations (Support Vector Machines with a second degree polynomial kernel and Maximum Entropy) achieved both after the application of PTCC rules an overall F-measure of 91.06.</abstract>
<identifier type="citekey">michailidis-etal-2006-greek</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2006/pdf/557_pdf.pdf</url>
</location>
<part>
<date>2006-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Greek Named Entity Recognition using Support Vector Machines, Maximum Entropy and Onetime
%A Michailidis, Ionas
%A Diamantaras, Konstantinos
%A Vasileiadis, Spiros
%A Frère, Yannick
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Gangemi, Aldo
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Tapias, Daniel
%S Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)
%D 2006
%8 May
%I European Language Resources Association (ELRA)
%C Genoa, Italy
%F michailidis-etal-2006-greek
%X We describe our work on Greek Named Entity Recognition using comparatively three different machine learning techniques: (i) Support Vector Machines (SVM), (ii) Maximum Entropy and (iii) Onetime, a shortcut method based on previous work of one of the authors. The majority of our systems features use linguistic knowledge provided by: morphology, punctuation, position of the lexical units within a sentence and within a text, electronic dictionaries, and the outputs of external tools (a tokenizer, a sentence splitter, and a Hellenic version of Brills Part of Speech Tagger). After testing we observed that the application of a few simple Post Testing Classification Correction (PTCC) rules created after the observation of output errors, improved the results of the SVM and the Maximum Entropy systems output. We achieved very good results with the three methods. Our best configurations (Support Vector Machines with a second degree polynomial kernel and Maximum Entropy) achieved both after the application of PTCC rules an overall F-measure of 91.06.
%U http://www.lrec-conf.org/proceedings/lrec2006/pdf/557_pdf.pdf
Markdown (Informal)
[Greek Named Entity Recognition using Support Vector Machines, Maximum Entropy and Onetime](http://www.lrec-conf.org/proceedings/lrec2006/pdf/557_pdf.pdf) (Michailidis et al., LREC 2006)
ACL