@inproceedings{inui-etal-2006-augmenting,
    title = "Augmenting a Semantic Verb Lexicon with a Large Scale Collection of Example Sentences",
    author = "Inui, Kentaro  and
      Hirano, Toru  and
      Iida, Ryu  and
      Fujita, Atsushi  and
      Matsumoto, Yuji",
    editor = "Calzolari, Nicoletta  and
      Choukri, Khalid  and
      Gangemi, Aldo  and
      Maegaard, Bente  and
      Mariani, Joseph  and
      Odijk, Jan  and
      Tapias, Daniel",
    booktitle = "Proceedings of the Fifth International Conference on Language Resources and Evaluation ({LREC}{'}06)",
    month = may,
    year = "2006",
    address = "Genoa, Italy",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://aclanthology.org/L06-1370/",
    abstract = "One of the crucial issues in semantic parsing is how to reduce costs of collecting a sufficiently large amount of labeled data. This paper presents a new approach to cost-saving annotation of example sentences with predicate-argument structure information, taking Japanese as a target language. In this scheme, a large collection of unlabeled examples are first clustered and selectively sampled, and for each sampled cluster, only one representative example is given a label by a human annotator. The advantages of this approach are empirically supported by the results of our preliminary experiments, where we use an existing similarity function and naive sampling strategy."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="inui-etal-2006-augmenting">
    <titleInfo>
        <title>Augmenting a Semantic Verb Lexicon with a Large Scale Collection of Example Sentences</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Kentaro</namePart>
        <namePart type="family">Inui</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Toru</namePart>
        <namePart type="family">Hirano</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ryu</namePart>
        <namePart type="family">Iida</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Atsushi</namePart>
        <namePart type="family">Fujita</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yuji</namePart>
        <namePart type="family">Matsumoto</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2006-05</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Nicoletta</namePart>
            <namePart type="family">Calzolari</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Khalid</namePart>
            <namePart type="family">Choukri</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aldo</namePart>
            <namePart type="family">Gangemi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Bente</namePart>
            <namePart type="family">Maegaard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Joseph</namePart>
            <namePart type="family">Mariani</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jan</namePart>
            <namePart type="family">Odijk</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Daniel</namePart>
            <namePart type="family">Tapias</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>European Language Resources Association (ELRA)</publisher>
            <place>
                <placeTerm type="text">Genoa, Italy</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>One of the crucial issues in semantic parsing is how to reduce costs of collecting a sufficiently large amount of labeled data. This paper presents a new approach to cost-saving annotation of example sentences with predicate-argument structure information, taking Japanese as a target language. In this scheme, a large collection of unlabeled examples are first clustered and selectively sampled, and for each sampled cluster, only one representative example is given a label by a human annotator. The advantages of this approach are empirically supported by the results of our preliminary experiments, where we use an existing similarity function and naive sampling strategy.</abstract>
    <identifier type="citekey">inui-etal-2006-augmenting</identifier>
    <location>
        <url>https://aclanthology.org/L06-1370/</url>
    </location>
    <part>
        <date>2006-05</date>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Augmenting a Semantic Verb Lexicon with a Large Scale Collection of Example Sentences
%A Inui, Kentaro
%A Hirano, Toru
%A Iida, Ryu
%A Fujita, Atsushi
%A Matsumoto, Yuji
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Gangemi, Aldo
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Tapias, Daniel
%S Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)
%D 2006
%8 May
%I European Language Resources Association (ELRA)
%C Genoa, Italy
%F inui-etal-2006-augmenting
%X One of the crucial issues in semantic parsing is how to reduce costs of collecting a sufficiently large amount of labeled data. This paper presents a new approach to cost-saving annotation of example sentences with predicate-argument structure information, taking Japanese as a target language. In this scheme, a large collection of unlabeled examples are first clustered and selectively sampled, and for each sampled cluster, only one representative example is given a label by a human annotator. The advantages of this approach are empirically supported by the results of our preliminary experiments, where we use an existing similarity function and naive sampling strategy.
%U https://aclanthology.org/L06-1370/
Markdown (Informal)
[Augmenting a Semantic Verb Lexicon with a Large Scale Collection of Example Sentences](https://aclanthology.org/L06-1370/) (Inui et al., LREC 2006)
ACL