@inproceedings{ayache-etal-2006-equer,
title = "{EQ}ue{R}: the {F}rench Evaluation campaign of Question-Answering Systems",
author = "Ayache, Christelle and
Grau, Brigitte and
Vilnat, Anne",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Gangemi, Aldo and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Tapias, Daniel",
booktitle = "Proceedings of the Fifth International Conference on Language Resources and Evaluation ({LREC}`06)",
month = may,
year = "2006",
address = "Genoa, Italy",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L06-1406/",
abstract = "This paper describes the EQueR-EVALDA Evaluation Campaign, the French evaluation campaign of Question-Answering (QA) systems. The EQueR Evaluation Campaign included two tasks of automatic answer retrieval: the first one was a QA task over a heterogeneous collection of texts - mainly newspaper articles, and the second one a specialised one in the Medical field over a corpus of medical texts. In total, seven groups participated in the General task and five groups participated in the Medical task. For the General task, the best system obtained 81.46{\%} of correct answers during the evalaution of the passages, while it obtained 67.24{\%} during the evaluation of the short answers. We describe herein the specifications, the corpora, the evaluation, the phase of judgment of results, the scoring phase and the results for the two different types of evaluation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ayache-etal-2006-equer">
<titleInfo>
<title>EQueR: the French Evaluation campaign of Question-Answering Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christelle</namePart>
<namePart type="family">Ayache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brigitte</namePart>
<namePart type="family">Grau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Vilnat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2006-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC‘06)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aldo</namePart>
<namePart type="family">Gangemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Genoa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the EQueR-EVALDA Evaluation Campaign, the French evaluation campaign of Question-Answering (QA) systems. The EQueR Evaluation Campaign included two tasks of automatic answer retrieval: the first one was a QA task over a heterogeneous collection of texts - mainly newspaper articles, and the second one a specialised one in the Medical field over a corpus of medical texts. In total, seven groups participated in the General task and five groups participated in the Medical task. For the General task, the best system obtained 81.46% of correct answers during the evalaution of the passages, while it obtained 67.24% during the evaluation of the short answers. We describe herein the specifications, the corpora, the evaluation, the phase of judgment of results, the scoring phase and the results for the two different types of evaluation.</abstract>
<identifier type="citekey">ayache-etal-2006-equer</identifier>
<location>
<url>https://aclanthology.org/L06-1406/</url>
</location>
<part>
<date>2006-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EQueR: the French Evaluation campaign of Question-Answering Systems
%A Ayache, Christelle
%A Grau, Brigitte
%A Vilnat, Anne
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Gangemi, Aldo
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Tapias, Daniel
%S Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC‘06)
%D 2006
%8 May
%I European Language Resources Association (ELRA)
%C Genoa, Italy
%F ayache-etal-2006-equer
%X This paper describes the EQueR-EVALDA Evaluation Campaign, the French evaluation campaign of Question-Answering (QA) systems. The EQueR Evaluation Campaign included two tasks of automatic answer retrieval: the first one was a QA task over a heterogeneous collection of texts - mainly newspaper articles, and the second one a specialised one in the Medical field over a corpus of medical texts. In total, seven groups participated in the General task and five groups participated in the Medical task. For the General task, the best system obtained 81.46% of correct answers during the evalaution of the passages, while it obtained 67.24% during the evaluation of the short answers. We describe herein the specifications, the corpora, the evaluation, the phase of judgment of results, the scoring phase and the results for the two different types of evaluation.
%U https://aclanthology.org/L06-1406/
Markdown (Informal)
[EQueR: the French Evaluation campaign of Question-Answering Systems](https://aclanthology.org/L06-1406/) (Ayache et al., LREC 2006)
ACL