@inproceedings{uryupina-2006-coreference,
title = "Coreference Resolution with and without Linguistic Knowledge",
author = "Uryupina, Olga",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Gangemi, Aldo and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Tapias, Daniel",
booktitle = "Proceedings of the Fifth International Conference on Language Resources and Evaluation ({LREC}`06)",
month = may,
year = "2006",
address = "Genoa, Italy",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L06-1453/",
abstract = "State-of-the-art statistical approaches to the Coreference Resolution task rely on sophisticated modeling, but very few (10-20) simple features. In this paper we propose to extend the standard feature set substantially, incorporating more linguistic knowledge. To investigate the usability of linguistically motivated features, we evaluate our system for a variety of machine learners on the standard dataset (MUC-7) with the traditional learning set-up."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="uryupina-2006-coreference">
<titleInfo>
<title>Coreference Resolution with and without Linguistic Knowledge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Uryupina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2006-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC‘06)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aldo</namePart>
<namePart type="family">Gangemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Genoa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>State-of-the-art statistical approaches to the Coreference Resolution task rely on sophisticated modeling, but very few (10-20) simple features. In this paper we propose to extend the standard feature set substantially, incorporating more linguistic knowledge. To investigate the usability of linguistically motivated features, we evaluate our system for a variety of machine learners on the standard dataset (MUC-7) with the traditional learning set-up.</abstract>
<identifier type="citekey">uryupina-2006-coreference</identifier>
<location>
<url>https://aclanthology.org/L06-1453/</url>
</location>
<part>
<date>2006-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Coreference Resolution with and without Linguistic Knowledge
%A Uryupina, Olga
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Gangemi, Aldo
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Tapias, Daniel
%S Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC‘06)
%D 2006
%8 May
%I European Language Resources Association (ELRA)
%C Genoa, Italy
%F uryupina-2006-coreference
%X State-of-the-art statistical approaches to the Coreference Resolution task rely on sophisticated modeling, but very few (10-20) simple features. In this paper we propose to extend the standard feature set substantially, incorporating more linguistic knowledge. To investigate the usability of linguistically motivated features, we evaluate our system for a variety of machine learners on the standard dataset (MUC-7) with the traditional learning set-up.
%U https://aclanthology.org/L06-1453/
Markdown (Informal)
[Coreference Resolution with and without Linguistic Knowledge](https://aclanthology.org/L06-1453/) (Uryupina, LREC 2006)
ACL