@inproceedings{ko-etal-2006-exploiting,
title = "Exploiting Multiple Semantic Resources for Answer Selection",
author = "Ko, Jeongwoo and
Hiyakumoto, Laurie and
Nyberg, Eric",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Gangemi, Aldo and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Tapias, Daniel",
booktitle = "Proceedings of the Fifth International Conference on Language Resources and Evaluation ({LREC}`06)",
month = may,
year = "2006",
address = "Genoa, Italy",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L06-1483/",
abstract = "This paper describes the utility of semantic resources such as the Web, WordNet and gazetteers in the answer selection process for a question-answering system. In contrast with previous work using individual semantic resources to support answer selection, our work combines multiple resources to boost the confidence scores assigned to correct answers and evaluates different combination strategies based on unweighted sums, weighted linear combinations, and logistic regression. We apply our approach to select answers from candidates produced by three different extraction techniques of varying quality, focusing on TREC questions whose answers represent locations or proper-names. Our experimental results demonstrate that the combination of semantic resources is more effective than individual resources for all three extraction techniques, improving answer selection accuracy by as much as 32.35{\%} for location questions and 72{\%} for proper-name questions. Of the combination strategies tested, logistic regression models produced the best results for both location and proper-name questions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ko-etal-2006-exploiting">
<titleInfo>
<title>Exploiting Multiple Semantic Resources for Answer Selection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeongwoo</namePart>
<namePart type="family">Ko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurie</namePart>
<namePart type="family">Hiyakumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Nyberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2006-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC‘06)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aldo</namePart>
<namePart type="family">Gangemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Genoa, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the utility of semantic resources such as the Web, WordNet and gazetteers in the answer selection process for a question-answering system. In contrast with previous work using individual semantic resources to support answer selection, our work combines multiple resources to boost the confidence scores assigned to correct answers and evaluates different combination strategies based on unweighted sums, weighted linear combinations, and logistic regression. We apply our approach to select answers from candidates produced by three different extraction techniques of varying quality, focusing on TREC questions whose answers represent locations or proper-names. Our experimental results demonstrate that the combination of semantic resources is more effective than individual resources for all three extraction techniques, improving answer selection accuracy by as much as 32.35% for location questions and 72% for proper-name questions. Of the combination strategies tested, logistic regression models produced the best results for both location and proper-name questions.</abstract>
<identifier type="citekey">ko-etal-2006-exploiting</identifier>
<location>
<url>https://aclanthology.org/L06-1483/</url>
</location>
<part>
<date>2006-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploiting Multiple Semantic Resources for Answer Selection
%A Ko, Jeongwoo
%A Hiyakumoto, Laurie
%A Nyberg, Eric
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Gangemi, Aldo
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Tapias, Daniel
%S Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC‘06)
%D 2006
%8 May
%I European Language Resources Association (ELRA)
%C Genoa, Italy
%F ko-etal-2006-exploiting
%X This paper describes the utility of semantic resources such as the Web, WordNet and gazetteers in the answer selection process for a question-answering system. In contrast with previous work using individual semantic resources to support answer selection, our work combines multiple resources to boost the confidence scores assigned to correct answers and evaluates different combination strategies based on unweighted sums, weighted linear combinations, and logistic regression. We apply our approach to select answers from candidates produced by three different extraction techniques of varying quality, focusing on TREC questions whose answers represent locations or proper-names. Our experimental results demonstrate that the combination of semantic resources is more effective than individual resources for all three extraction techniques, improving answer selection accuracy by as much as 32.35% for location questions and 72% for proper-name questions. Of the combination strategies tested, logistic regression models produced the best results for both location and proper-name questions.
%U https://aclanthology.org/L06-1483/
Markdown (Informal)
[Exploiting Multiple Semantic Resources for Answer Selection](https://aclanthology.org/L06-1483/) (Ko et al., LREC 2006)
ACL