@inproceedings{rosell-velupillai-2008-revealing,
title = "Revealing Relations between Open and Closed Answers in Questionnaires through Text Clustering Evaluation",
author = "Rosell, Magnus and
Velupillai, Sumithra",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}'08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2008/pdf/438_paper.pdf",
abstract = "Open answers in questionnaires contain valuable information that is very time-consuming to analyze manually. We present a method for hypothesis generation from questionnaires based on text clustering. Text clustering is used interactively on the open answers, and the user can explore the cluster contents. The exploration is guided by automatic evaluation of the clusters against a closed answer regarded as a categorization. This simplifies the process of selecting interesting clusters. The user formulates a hypothesis from the relation between the cluster content and the closed answer categorization. We have applied our method on an open answer regarding occupation compared to a closed answer on smoking habits. With no prior knowledge of smoking habits in different occupation groups we have generated the hypothesis that farmers smoke less than the average. The hypothesis is supported by several separate surveys. Closed answers are easy to analyze automatically but are restricted and may miss valuable aspects. Open answers, on the other hand, fully capture the dynamics and diversity of possible outcomes. With our method the process of analyzing open answers becomes feasible.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rosell-velupillai-2008-revealing">
<titleInfo>
<title>Revealing Relations between Open and Closed Answers in Questionnaires through Text Clustering Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Magnus</namePart>
<namePart type="family">Rosell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sumithra</namePart>
<namePart type="family">Velupillai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Open answers in questionnaires contain valuable information that is very time-consuming to analyze manually. We present a method for hypothesis generation from questionnaires based on text clustering. Text clustering is used interactively on the open answers, and the user can explore the cluster contents. The exploration is guided by automatic evaluation of the clusters against a closed answer regarded as a categorization. This simplifies the process of selecting interesting clusters. The user formulates a hypothesis from the relation between the cluster content and the closed answer categorization. We have applied our method on an open answer regarding occupation compared to a closed answer on smoking habits. With no prior knowledge of smoking habits in different occupation groups we have generated the hypothesis that farmers smoke less than the average. The hypothesis is supported by several separate surveys. Closed answers are easy to analyze automatically but are restricted and may miss valuable aspects. Open answers, on the other hand, fully capture the dynamics and diversity of possible outcomes. With our method the process of analyzing open answers becomes feasible.</abstract>
<identifier type="citekey">rosell-velupillai-2008-revealing</identifier>
<location>
<url>http://www.lrec-conf.org/proceedings/lrec2008/pdf/438_paper.pdf</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Revealing Relations between Open and Closed Answers in Questionnaires through Text Clustering Evaluation
%A Rosell, Magnus
%A Velupillai, Sumithra
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F rosell-velupillai-2008-revealing
%X Open answers in questionnaires contain valuable information that is very time-consuming to analyze manually. We present a method for hypothesis generation from questionnaires based on text clustering. Text clustering is used interactively on the open answers, and the user can explore the cluster contents. The exploration is guided by automatic evaluation of the clusters against a closed answer regarded as a categorization. This simplifies the process of selecting interesting clusters. The user formulates a hypothesis from the relation between the cluster content and the closed answer categorization. We have applied our method on an open answer regarding occupation compared to a closed answer on smoking habits. With no prior knowledge of smoking habits in different occupation groups we have generated the hypothesis that farmers smoke less than the average. The hypothesis is supported by several separate surveys. Closed answers are easy to analyze automatically but are restricted and may miss valuable aspects. Open answers, on the other hand, fully capture the dynamics and diversity of possible outcomes. With our method the process of analyzing open answers becomes feasible.
%U http://www.lrec-conf.org/proceedings/lrec2008/pdf/438_paper.pdf
Markdown (Informal)
[Revealing Relations between Open and Closed Answers in Questionnaires through Text Clustering Evaluation](http://www.lrec-conf.org/proceedings/lrec2008/pdf/438_paper.pdf) (Rosell & Velupillai, LREC 2008)
ACL