@inproceedings{nguyen-etal-2008-challenges,
title = "Challenges in Pronoun Resolution System for Biomedical Text",
author = "Nguyen, Ngan and
Kim, Jin-Dong and
Tsujii, Jun{'}ichi",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}`08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L08-1071/",
abstract = "This paper presents our findings on the feasibility of doing pronoun resolution for biomedical texts, in comparison with conducting pronoun resolution for the newswire domain. In our experiments, we built a simple machine learning-based pronoun resolution system, and evaluated the system on three different corpora: MUC, ACE, and GENIA. Comparative statistics not only reveal the noticeable issues in constructing an effective pronoun resolution system for a new domain, but also provides a comprehensive view of those corpora often used for this task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-etal-2008-challenges">
<titleInfo>
<title>Challenges in Pronoun Resolution System for Biomedical Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ngan</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin-Dong</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our findings on the feasibility of doing pronoun resolution for biomedical texts, in comparison with conducting pronoun resolution for the newswire domain. In our experiments, we built a simple machine learning-based pronoun resolution system, and evaluated the system on three different corpora: MUC, ACE, and GENIA. Comparative statistics not only reveal the noticeable issues in constructing an effective pronoun resolution system for a new domain, but also provides a comprehensive view of those corpora often used for this task.</abstract>
<identifier type="citekey">nguyen-etal-2008-challenges</identifier>
<location>
<url>https://aclanthology.org/L08-1071/</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Challenges in Pronoun Resolution System for Biomedical Text
%A Nguyen, Ngan
%A Kim, Jin-Dong
%A Tsujii, Jun’ichi
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F nguyen-etal-2008-challenges
%X This paper presents our findings on the feasibility of doing pronoun resolution for biomedical texts, in comparison with conducting pronoun resolution for the newswire domain. In our experiments, we built a simple machine learning-based pronoun resolution system, and evaluated the system on three different corpora: MUC, ACE, and GENIA. Comparative statistics not only reveal the noticeable issues in constructing an effective pronoun resolution system for a new domain, but also provides a comprehensive view of those corpora often used for this task.
%U https://aclanthology.org/L08-1071/
Markdown (Informal)
[Challenges in Pronoun Resolution System for Biomedical Text](https://aclanthology.org/L08-1071/) (Nguyen et al., LREC 2008)
ACL