@inproceedings{haddow-alex-2008-exploiting,
title = "Exploiting Multiply Annotated Corpora in Biomedical Information Extraction Tasks",
author = "Haddow, Barry and
Alex, Beatrice",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Maegaard, Bente and
Mariani, Joseph and
Odijk, Jan and
Piperidis, Stelios and
Tapias, Daniel",
booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}`08)",
month = may,
year = "2008",
address = "Marrakech, Morocco",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L08-1072/",
abstract = "This paper discusses the problem of utilising multiply annotated data in training biomedical information extraction systems. Two corpora, annotated with entities and relations, and containing a number of multiply annotated documents, are used to train named entity recognition and relation extraction systems. Several methods of automatically combining the multiple annotations to produce a single annotation are compared, but none produces better results than simply picking one of the annotated versions at random. It is also shown that adding extra singly annotated documents produces faster performance gains than adding extra multiply annotated documents."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="haddow-alex-2008-exploiting">
<titleInfo>
<title>Exploiting Multiply Annotated Corpora in Biomedical Information Extraction Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Alex</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2008-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Tapias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Marrakech, Morocco</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper discusses the problem of utilising multiply annotated data in training biomedical information extraction systems. Two corpora, annotated with entities and relations, and containing a number of multiply annotated documents, are used to train named entity recognition and relation extraction systems. Several methods of automatically combining the multiple annotations to produce a single annotation are compared, but none produces better results than simply picking one of the annotated versions at random. It is also shown that adding extra singly annotated documents produces faster performance gains than adding extra multiply annotated documents.</abstract>
<identifier type="citekey">haddow-alex-2008-exploiting</identifier>
<location>
<url>https://aclanthology.org/L08-1072/</url>
</location>
<part>
<date>2008-05</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploiting Multiply Annotated Corpora in Biomedical Information Extraction Tasks
%A Haddow, Barry
%A Alex, Beatrice
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Odijk, Jan
%Y Piperidis, Stelios
%Y Tapias, Daniel
%S Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC‘08)
%D 2008
%8 May
%I European Language Resources Association (ELRA)
%C Marrakech, Morocco
%F haddow-alex-2008-exploiting
%X This paper discusses the problem of utilising multiply annotated data in training biomedical information extraction systems. Two corpora, annotated with entities and relations, and containing a number of multiply annotated documents, are used to train named entity recognition and relation extraction systems. Several methods of automatically combining the multiple annotations to produce a single annotation are compared, but none produces better results than simply picking one of the annotated versions at random. It is also shown that adding extra singly annotated documents produces faster performance gains than adding extra multiply annotated documents.
%U https://aclanthology.org/L08-1072/
Markdown (Informal)
[Exploiting Multiply Annotated Corpora in Biomedical Information Extraction Tasks](https://aclanthology.org/L08-1072/) (Haddow & Alex, LREC 2008)
ACL